
CtoP

Knowledge Software Ltd
Farnborough, Hants, England

Support

Knowledge Software Ltd provides telephone and mail support for those users who have

purchased their systems from Knowledge Software Ltd. All other users of this system must

contact their supplier for support. Knowledge Software Ltd does not have the resources to

support users who have purchased their software from other vendors.

Disclaimer

This document and the software it describes are subject to change without notice. No

warranty, express or implied, covers their use. Neither the manufacturer nor the seller is

responsible or liable for any consequences of their use.

TradeMarks

CtoP and POP-NCG are trademarks of Knowledge Software Ltd.

POPTYSER and EDIP are registered trademarks of Knowledge Software Ltd.

UCSD, UCSD Pascal and UCSD p-System are trademarks of the Regents of the University

of California.

Knowledge Software Ltd, 62 Fernhill Road, Farnborough, Hants GU14 9RZ.

Tel: +(44) 01252-520667

e-mail: ctop@knosof.co.uk

Copyright 1986,2003 Knowledge Software Ltd. All rights reserved.

(c) 1986 Knowledge Software Ltd, December 13, 19103 ii

Chapter 1

Introduction to CtoP

It is theoretically possible to make a 100% conversion from ‘C’ to Pascal. However, after

such a conversion the Pascal would be as unreadable as the original ‘C’.

Our aim with CtoP has been to produce output which is understandable. This has meant that

some source conversion is not performed. Instead the offending source is flagged and the

programmer given suggestions about possible conversion strategies.

CtoP makes three passes over the source code. The first pass gathers information necessary

for generating the INTERFACE sections in the converted program. The second pass analyses

the declarations and uses of variables within each source file and the converted program and

cross reference information are output on the third pass.

1.1 Using CtoP

The best results are obtained by giving CtoP all source code to a program. It is possible to

give complete source source code as input and obtain selected source code as output.

To be expanded…

1.2 Reading this manual

The reader is assumed to know Pascal. Sufficient explanations of ‘C’ are given in order for

the programmer to gain some understanding of the problems presented in performing a

conversion.

Most sections have the format:

What ‘C’ does. What Pascal does.

What CtoP does.

What a programmer may have to do.

Information provided by CtoP.

1.3 Which C?

CtoP uses Unix System V ‘C’ on the 68000 as its reference point. The Kernighan & Ritchie

‘C’ is a small language in comparison with the above. The draft ANSI standard is currently

updated every 3 months.

(c) 1986 Knowledge Software Ltd, December 13, 19103 1

Introduction to CtoP
Which C?

1.4 An overview of C programming

‘C’ was designed for people who get soup in their beards.

‘C’ encourages trickery. A lot of experience is required to become familar with these tricks.

(c) 1986 Knowledge Software Ltd, December 13, 19103 2

Chapter 2

Lexical Elements

There are differences between lexical elements in the two languages. For the most part

these differences are handled as part of the construct in which they occur. The one

exception is constants. Here ‘C’ has characters that have ’magical’ properties; these are

dealt with on page 7.

We will go through the differences here in order to provide background information.

2.1 Layout of the source code

Both languages are relatively free of restrictions regarding the layout of source code. CtoP

attempts to provide lines with an indentation scheme applicable to Pascal. Except where

multiple ‘C’ statements appear on one line, CtoP will map input lines to output lines.

In ‘C’ a ’\’ as the last character on a line signifies that the following line is to be appended.

This feature is used in defining macro bodies and strings. CtoP correctly joins the lines and

removes the ’\’.

The preprocessor has its own layout conventions. No attempt will be made to follow

unpreprocessed layout.

2.2 The source character set

The ASCII character set is assumed. See appendix 1.

2.3 Comments

/* */ (* *)

Comments have the status of the space character in both languages.

Comments not enclosed within function bodies will be output as they are encountered.

Comments within declarations will occur at the head of the surrounding scope in which they

occur.

Comments within statements will occur as close as possible in the output to their original

position in the input.

(c) 1986 Knowledge Software Ltd, December 13, 19103 3

Lexical Elements
Tokens

2.4 Tokens

‘C’ attempts to form the longest possible token. The implications of this rule only involve

tokens that are not in Pascal. CtoP handles these automatically.

2.5 Operators and separators

% MOD

& && AND

| || OR

^ ~ NOT

/ DIV

!= <>

== =

-> . or ^.

= :=

’;’ is treated as part of the syntax of

statements.

’;’ is treated as a separator.

2.6 Identifiers

Case is significant Case is not significant

’_’ is significant ’_’ is not significant

’_’ may occur as the first character ’_’ may not occur as the first character

’$’ is usually a legal character and is

significant

’$’ is not a legal character in a name

More than 8 characters are usually

considered significant. The proposed Ansi

standard specifies a limit of 31 significant

characters

Only the first 8 characters are considered

significant.

Some linkers impose a limit on the

number of significant characters in extern

names. The porposed Ansi standard

specifies 7.

Some linkers impose a limit on the

number of significant characters in

EXTERN names. A limit of 6 or 8 is

common.

Letters within names are output as they appear in the input.

The ’$’ character is output as a ’D’.

Names having a ’_’ as the first character have a ’U’ added to the front of the name.

(c) 1986 Knowledge Software Ltd, December 13, 19103 4

Lexical Elements
Identifiers

If names in the same scope clash the second name is made unique using the following rules:

Digits are inserted into the name in the least significant positions to make the Pascal

identifiers unique. e.g.,

if ‘C’ defines the names ALongIdentifier a_long_identifier A_LONG_IDENTIFIER, they

are distinct names (in ‘C’). CtoP will produce the following (Pascal) identifiers:

ALongIdentifier a_long_id1entifier A_LONG_ID2ENTIFER.

2.6.1 #define names

An attempt will be made to carry constants defined as macro names over to Pascal as

constant identifiers. See §3 for further details.

2.6.2 Labels

Labels are represented by names following

the same rules as those for identifiers.

Labels are represented by positive con-

stant integers.

Unique numbers are allocated for every label identifier in a function body. The Pascal label

999 is reserved to follow the last executable statement in the function body.

2.7 Reserved words

‘C’ contains reserved words that are not in Pascal. This simply prevents programmers using

these names as identifiers in ‘C’.

Pascal has its own set of reserved words and also has the concept of predefined words. ‘C’

identifiers that clash with Pascal reserved words will be made unique. ‘C’ identifiers that

clash with predefined words will be made unique if the ‘C’ names do not perform the same

function.

(c) 1986 Knowledge Software Ltd, December 13, 19103 5

Lexical Elements
Reserved words

‘C’ reserved words:

auto break case char continue const

default do double else enum extern float

for goto if int long register return short

signed sizeof static struct switch typedef

union unsigned void volatile while

(UCSD) Pascal reserved words:

AND ARRAY BEGIN CASE CONST DIV DO

DOWNTO ELSE END EXTERNAL FILE

FOR FORWARD FUNCTION GOTO IF

IMPLEMENTATION IN INTERFACE

LABEL MOD NOT OF OR PACKED

PROCEDURE PROCESS PROGRAM

RECORD SEGMENT SEPARATE SET THEN

TO TYPE UNIT UNTIL USES VAR WHILE

WITH

(UCSD) Pascal predefined names:

abs arctan atan attach blockread blockwrite

boolean char chr close concat copy cos crunch

delete dispose eof eoln exit exp false fillchar get

gotoxy halt idsearch input insert integer

interactive ioresult keyboard length ln log lock

mark maxint memavail memlock memswap

moveleft moveright new nil normal odd ord

output pack page pmachine pos pred processid

purge put pwroften read readln real release

reset rewrite round scan seek semaphore

seminit signal sin sizeof sqr sqrt start str string

succ text time treesearch true trunc unitbusy

unitclear unitread unitstatus unitwait unitwrite

unpack varavail varnew wait write writeln

2.8 Constants

2.8.1 Integer constants

Octal and hexadecimal digits may be rep-

resented.

There is no representation for octal and

hexadecimal digits.

Long integer constants may be rep-

resented.

Long integer constants may be represented

(UCSD Pascal extension).

Octal and hexadecimal constants will be converted to their decimal equivalent.

See page 25 for a discussion of long integers.

(c) 1986 Knowledge Software Ltd, December 13, 19103 6

Lexical Elements
Constants

2.8.2 Floating-point constants

The type of a floating-point constant is always double . The size of real constants is the

same as the size of real variables. For a discussion of real size see page 25

Fixed point and exponential notation may be used to represent floating-point constants in

both languages.

Examples

4.3 7E-4 -23.7504

2.8.3 Character constants

Non-printing characters may be rep-

resented.

Non-printing characters may not be rep-

resented.

The ‘C’ convention of representing non-printing characters will be carried over into the

output. See below for a discussion of escape characters.

2.8.4 String constants

Strings are delimited by the ’"’ character. Strings are delimited by the ’’’ character.

The string delimiter is represented in a

string by \"

The string delimiter is represented in a

string by ’’

Strings may contain characters that are

interpreted to have special meaning by the

runtime support routines.

There are no conventions specified for

interpreting any characters as having

special meanings.

The type of a string constant is "array of

char".

The type of a string constant is PACKED

ARRAY OF CHAR.

The value of sizeof("abc") is 4. SIZEOF(’abc’) is illegal.

CtoP will change the delimiting character, convert \" to ", \’ to ’’ and copy the string

unchanged to the output file.

2.8.5 Escape characters

These are sequences of characters used to denote other characters that cannot be easily rep-

resented in a source program.

escape-character ::= ’\’ escape-code

escape-code ::= character-escape-code | numeric-escape-code

character-escape-code ::= ’b’ | ’f’ | ’n’ | ’r’ | ’t’ | ’v’ | ’’’ | ’"’

(c) 1986 Knowledge Software Ltd, December 13, 19103 7

Lexical Elements
Constants

numeric-escape-code ::= octal-digit { octal-digit { octal-digit }?}?

2.8.6 Character escape codes

The meaning of the character escape codes are as follows:

b backspace

f form feed

n newline

r carriage return

t horizontal tabulate

v vertical tabulate

’ single quote

" double quote

2.8.7 Numeric escape codes

Any character may represented by writing

that character as its octal encoding.

CHR converts decimal integers into char

type.

In ‘C’ these escape codes are usually assigned to #define names (CONST identifiers in

Pascal). Pascal does not allow the use of CHR in assignments to CONST identifiers. CtoP

outputs the CHR form and leaves the programmer to make any changes in CONST

identifiers.

Escape codes may also appear in ‘C’ case labels. If the selector value has type char CtoP

outputs the CHR form.

Note that the handling of escape codes differs in strings and characters.

(c) 1986 Knowledge Software Ltd, December 13, 19103 8

Chapter 3

The C preprocessor

‘C’ compilers come with a preprocessor. Pascal does not have any macro facilities. The

input, possible containing macros, is expanded into ‘C’ and this ‘C’ is then converted.

The two most common uses of macros in ‘C’ are:

1. To give names to constants. CtoP attempts to carry these over as constant

identifiers.

2. To give a name to a commonly used piece of code. There are two reasons for

wanting to do this:

a) The overhead of placing the code in a function and calling it is considered

too great.

b) The ‘C’ syntax is extended in some way.

CtoP expands out the macro body and converts the ‘C’ to Pascal.

For those users wanting a greater understanding of how macros are expanded CtoP has a

debug mode which prints out information on macro expansion as it happens.

Those books purporting to describe ’standard’ ‘C’ all point out that the preprocessor works

at the token, not the character level. Some preprocessors work at the character level. CtoP

works at the token level. The impact of this deviation by some compilers will only become

apparent if the original author had used this feature in devious ways.

(c) 1986 Knowledge Software Ltd, December 13, 19103 9

Chapter 4

Declarations

4.1 Organization of Declarations

The declaration of variables, functions and

types may be mixed in any order.

Declarations must follow a strict order:

labels, constants, types, variables,

functions (and procedures) and main body.

Declarations may occur at the top level or

at the head of any block (compound

statement).

Declarations are global, or local to a

function (or procedure).

Variables and functions may be refered to

before their defining point.

Variables and functions must be defined

before they can be referenced.

CtoP lifts head-of-block declarations out to the local level and if necessary, modifies the

identifiers to avoid any resulting name clashes.

CtoP does not reorder function declarations to place defining points before uses.

4.2 Terminology

4.2.1 Scope

A top-level declaration is in scope from its

declaration to the end of the source

program file.

Equivalent to a global declaration in

Pascal.

A formal parameter is in scope from its

declaration to the end of the function body.

Similarly for formal parameters and

locals.

(c) 1986 Knowledge Software Ltd, December 13, 19103 10

Declarations
Terminology

A head-of-block declaration is in scope

from its declaration to the end of the

block.

Declarations inside blocks are not

allowed.

…

{

…

for (…)

{

int i;

…i…

};

…

}

VAR

i : INTEGER;

…

BEGIN

…

FOR … DO

BEGIN

…i…

END;

…

END

A statement label is in scope throughout

the function body in which it appears.

Same as ‘C’.

4.2.2 Visibility

Identifiers are introduced into the name

space of the scope in which they occur in

the textual order they are encountered.

Identifiers are introduced simultaneously

into the name space of the scope in which

they occur.

int j;

{

int i=j;

int j=0;

…

}

VAR

j : INTEGER;

i : INTEGER;

j1: INTEGER;

BEGIN

i := j;

j1 := 0;

…

END

(c) 1986 Knowledge Software Ltd, December 13, 19103 11

Declarations
Terminology

4.2.3 Forward References

Use of a label is permitted before its

declaration point (i.e., the statement which

it labels).

All labels must be declared before use.

A structure, union or enumeration tag may

be used before it is declared when the size

of the structure etc is not needed.

It is possible to declare a pointer to a type

before that type is declared, but otherwise

declarations must precede use.

struct list {

struct list *next;

…

};

TYPE

P_list = ^ list;

list = RECORD

next : P_list;

…

END;

4.2.4 Overloading Of Names

‘C’ allows items to have the same name, if they refer to objects in different name spaces:

Statement labels. Labels in Pascal are positive integers.

Structure, union and enumeration tags. These correspond to type names in Pascal,

but must be distinct from other identifiers.

Variables, functions, typedef-names, enu-

meration constants etc.

In Pascal, this name space includes type

names too (structure etc. tags).

4.2.5 Duplicate Declarations

Any number of external declarations for

the same name may exist (as long as their

types agree).

Multiple declarations of the same name in

the same scope are illegal (with the

exception of FORWARD).

Duplicate declarations are a method of

introducing variables and functions before

their defining point.

Functions and procedures may be declared

forward.

CtoP removes any duplicate declarations.

(c) 1986 Knowledge Software Ltd, December 13, 19103 12

Declarations
Terminology

4.2.6 Duplicate Visibility

{

int i;

…i…

{

int i;

…i…

};

…i…

}

VAR

i : INTEGER;

i1 : INTEGER;

BEGIN

…i…

…i1…

…i…

END

CtoP lifts the head-of-block declarations out to the level local to the enclosing

function/procedure body. Name clashes are resolved by renaming the nested identifiers (see

page 4).

4.2.7 Extent

The differences between ‘C’ and Pascal, if any, do not affect CtoP. See also pages 16 and

23.

4.2.8 Initial Values

Initialization may be specified for most

variable declarations.

Initialisation on declarations is not

allowed.

Initialization occurs when storage is allocated for that variable. CtoP arranges for local

initializations to occur at the beginning of the function body.

Static variables keep their value, unchanged, during execution outside their scope. CtoP

exports such variables to the global level, and their initializations occur at the beginning of

the main program.

The mechanism used to convert ‘C’ initializers into Pascal keeps things legal.

CtoP initialises static variables to zero.

(c) 1986 Knowledge Software Ltd, December 13, 19103 13

Declarations
Terminology

4.2.9 External Names

Declaring a name external is a method of

providing information about variables and

functions that is not available by any other

means.

UCSD Pascal provides an explicit

mechanism for importing variables and

functions. A function declared as

EXTERNAL is assumed to be in assembly

language. An explicit link stage is

required to incorporate these external

assembly language routines.

4.3 Storage Class Specifiers

auto Local variables in procedures.

extern Global variables imported from other

compilation units.

register The first 16 locations in a procedure can

be handled more efficiently than sub-

sequent locations.

static Global variables.

typedef TYPE declarations.

Local variables declared as static will be made global by CtoP.

Local variables declared register will be reordered to the beginning of the local declarations

to take advantage of the extra efficiency (most architectures have short form addressing that

allow variables with small offsets to be access more efficiently than other variables). This

reordering is safe because it is illegal to "point to" register variables in ‘C’.

4.3.1 Default Storage Class Specifiers

Global variables and functions are

assumed to have storage class extern.

No variable, function or procedure may be

exported unless explicitly stated, i.e., by

placing it in an INTERFACE part.

For local variables auto is assumed. Local variables are equivalent to auto.

(c) 1986 Knowledge Software Ltd, December 13, 19103 14

Declarations
Type Specifiers

4.4 Type Specifiers

enum { one, two,…} (one, two,…)

float REAL

int

char

INTEGER

CHAR

struct {…} RECORD … END

Typedef-name. User-defined type name.

union {…} Variant record.

void as in "function returning void" PROCEDURE …

Procedures/functions are not available as

variable types.

4.4.1 Default Type Specifiers

The type specifier may be omitted from a

declaration, in which case it defaults to

int.

A type specifier is required for all

declarations.

CtoP generates INTEGER if no type specifier is given in the original ‘C’ source.

4.4.2 Missing Declarators

The declarator may be omitted. The declarator may not be omitted.

A tagged type specifier (struct, union or

enum), declares a new type.

This corresponds to a TYPE declaration.

4.5 Declarators

Declarations introduce the name being declared.

(c) 1986 Knowledge Software Ltd, December 13, 19103 15

Declarations
Declarators

4.5.1 Simple Declarators

struct date {

int day, month, year;

} today;

int i;

float time;

TYPE date = RECORD

day : INTEGER;

month : INTEGER;

year : INTEGER

END;

VAR

i : INTEGER;

time : REAL;

today : DATE;

4.5.2 Pointer Declarators

int *p; p : ^INTEGER;

Although this declaration declares p to be a pointer to an integer in ‘C’ it will frequently be

assigned an array of int. For these assignments the address of the first element of the array

is assigned to p. Arithmetic may be performed on p to move it along the array. See §7.14
for further discussion.

4.5.3 Array Declarators

(c) 1986 Knowledge Software Ltd, December 13, 19103 16

Declarations
Declarators

The lower bound is always zero. The lower bound is user selectable.

The number of elements in the array need

not be explicitly given in formal

parameters.

Conformant array parameters need not

have their explicit bounds provided.

The number of elements in the array need

not be explicitly given if an initialiser is

specified.

Initialisers are not available.

int a[10];

int aa[10][20];

char hello[]="Hello World";

VAR

a : ARRAY [0..9] OF INTEGER;

aa : ARRAY [0..9] OF

ARRAY [0..19] OF INTEGER;

hello : STRING[11];

…

BEGIN

hello := CONCAT(’Hello World’, C_Null_String);

…

CtoP will work out the number of elements in an array if an initialiser is provided.

When the initializer is a string, CtoP generates STRING instead of ARRAY…OF CHAR, and

outputs initialization code for a null-terminated string. C_Null_String is CtoP-generated

variable in the interface of TypeUnit, initialized to the equivalent of ‘C’s null-string "". See

page 66 for a discussion of the CtoP-generated UNIT containing type declarations.

4.5.4 Function Declarators

Variables of type "function returning …"

may be declared.

Variables of type "function returning …"

are not available.

4.5.5 Composition of Declarators

(c) 1986 Knowledge Software Ltd, December 13, 19103 17

Declarations
Initializers

4.6 Initializers

When a variable is declared an initial

value may be specified. This value is

assigned to that variable at the start of that

variables lifetime.

Variables may not be given an initial value

at their defining point.

Static variables are defined to have an

initial value of 0, even if no initialiser is

specified.

All variables are undefined at the start of

program execution.

CtoP moves initialisation code to the start of the procedure or function. They are moved to

the main program in the case of static variables.

‘C’ compilers usually impose restrictions on the forms of expressions that may occur as

initialisers to different storage classes. Since CtoP converts initialisation code into

assignments these restrictions are no longer applicable.

4.6.1 Integers

Such initializations are correctly translated by CtoP.

4.6.2 Floating-point

Such initializations are correctly translated by CtoP.

4.6.3 Pointers

Such initializations are correctly translated by CtoP.

4.6.4 Arrays

The ‘C’ text of the initializer is output as-is.

4.6.5 Enumerations

Such initializations are correctly translated by CtoP.

4.6.6 Structures

The ‘C’ text of the initializer is output as-is.

4.6.7 Unions

The ‘C’ text of the initializer is output as-is.

(c) 1986 Knowledge Software Ltd, December 13, 19103 18

Declarations
Initializers

4.6.8 Other Types

Function types and void may not occur in initialisers

4.6.9 Eliding Braces

This is a ‘C’ specific feature handled by CtoP as part of the conversion process.

4.7 Implicit Declarations

It is permitted to call an external function

that has not been declared. The declaration

extern int …(); is assumed.

All names must be declared before use.

CtoP generates the appropriate function declaration. See page 66 on UNITs generated by

CtoP.

4.8 External Names

‘C’ compilers adopt various strategies to determine which declaration, of a multiply

declared identifier represents its definition.

The definition of a function is self-evident since it has a body. All multiple declarations of a

function resolve onto this definition.

Variables are more of a problem. Some compilers assume that all extern declarations are

simply references and a non-extern declaration of the identifier is its definition. Other

compilers insist on the defining declaration being indicated by use of an initializer.

CtoP assumes that the non-extern declaration is the defining instance. This is reasonable

because implicit declarations are always assumed to be extern in ‘C’.

The implications of this are only important if the ‘C’ source assumes that defining instances

may be extern. In this case CtoP will flag the identifier as "not declared in the suite of ‘C’

source programs".

(c) 1986 Knowledge Software Ltd, December 13, 19103 19

Chapter 5

Types

The type checking is only strong for

aggregates.

The type checking is always strong.

Implicit type conversions may occur. Implicit type conversions never occur.

Categories of types:

void No equivalent

Function Function or procedure variables may only

occur as formal parameters

Scalar types Scalar types

int, char, * INTEGER, CHAR, ^, BOOLEAN

Enumerated types Enumerated types

Aggregate types Aggregate types

array, struct, union ARRAY, RECORD

5.1 Storage Units

The size of an object of type char is taken

as 1 unit of storage.

UCSD Pascal takes 1 word of 16 bits to be

its unit of storage.

To be expanded…

5.2 Integer Types

(c) 1986 Knowledge Software Ltd, December 13, 19103 20

Types
Integer Types

Integer types are used to represent

booleans as well as the more usual integral

numbers. Booleans are represented by the

integers 0 for FALSE and 1 for TRUE.

Integers are 16 bit signed quantities.

Unsigned integer fields of packed records

may contain less than 16 bits.

5.2.1 Signed Integer Types

There are three sizes of signed integer,

denoted by short, int and long. The only

assumption made is that int is at least as

large as short, and long is at least as large

as int.

Pascal provides one size, INTEGER.

UCSD has INTEGER[n] as an extension,

where n is the number of digits required.

5.2.2 Unsigned Integer Types

An unsigned integer type represented by n

bits will hold values in the range 0 to 2n-1.

Unsigned integers are available in the

same three sizes as signed integers (see

above), and the same assumption holds.

Unsigned integers in the range 0..MaxInt

may be declared using subranges.

All arithmetic involving unsigned integers

delivers unsigned results. Comparisons

with negative values will give misleading

results, e.g., the comparison (u > -1),

where u is unsigned, will yield 0 (FALSE)

because -1 is converted to an unsigned

value (i.e., 2n-1) before the comparison.

All arithmetic on positive subranges is

done using signed arithmetic.

5.2.3 Character Type

Characters are represented by their ordinal

values. It is unspecified whether or not

characters behave as signed or unsigned

integers.

Characters are represented by their ordinal

types.

Expressions of type char may be converted

implicitly to int.

Expressions of type char may explicitly

converted to INTEGER using the built in

function ORD.

(c) 1986 Knowledge Software Ltd, December 13, 19103 21

Types
Integer Types

5.2.4 Long Integers

These are integers that can take on values

in the range -2147483647…2147483647.

INTEGER[32] may contain upto 32 digits.

Usually held in twos complement form. Not usually held in twos complement form

(BCD is common).

Programs using long int to represent bit vectors longer than 16 bits are not going to find the

UCSD INTEGER[] of much use.

5.3 Floating-Point Types

Single and double precision floating point

numbers are provided by float and double

(or long float) respectively. All values of

type float are converted to double in

expressions.

Pascal provides one floating-point size. A

variable of type REAL has an implemen-

tation defined size that may correspond to

the ‘C’ float or double.

As with integer types, the assumption is

that the size and precision of double is at

least as great as float although they may

be implemented as the same size.

5.4 Pointer Types

Pointers may point at the stack or heap. Pointers may only address objects on the

heap, although this can be circumscribed.

A special pointer value, 0, is defined as the

null pointer.

The null pointer is represented by the

predefined word NIL (this has an im-

plementation defined value).

CtoP will convert 0 to NIL where the context requires a pointer type.

5.4.1 Pointer Arithmetic

Pointers are very similar to arrays, and

may be indexed as if they were arrays.

Pointers and arrays are completely differ-

ent types.

(c) 1986 Knowledge Software Ltd, December 13, 19103 22

Types
Pointer Types

5.4.2 Some Problems With Pointers

Because of the multifarious use of pointers

there are sometimes problems with ad-

dressing on some machine architectures.

The operations on pointers are sufficiently

restrictive to allow reasonable handling on

most machines.

CtoP assumes that a programmer has not made use of a particular, machine specific,

representation form for pointers.

5.5 Array Types

An array may be declared to have

elements of any type except void and

"function returning…". All arrays are

restricted to one dimension and are zero-

origin (i.e., their lower bound is always 0).

An array may be declared

VAR a : ARRAY [n..m] OF …;

where the lower bound, n, may be non-

zero. (n and m must be constants)

int a[10]; a : ARRAY[0..9] OF INTEGER;

char c[1]; c : ARRAY[0..0] OF CHAR;

5.5.1 Arrays and Pointers

When an array name appears in a ‘C’

expression, it is converted to a pointer type

that refers to the first element of the array.

Indexing is thus defined in terms of

pointers and indirection as follows: a[i] is

defined as *(a + i).

Array names may not appear in an

expression unless they are subscripted,

except as an argument to a procedure,

function or whole array assignment.

See also page 62 and §7.14.

5.5.2 Multidimensional Arrays

A multidimensional array is declared as

"array of array of …", i.e., …a[n][m]…;

Multidimensional arrays are declared

VAR a : ARRAY [i..n, j..m] OF …;

aa : ARRAY [i..n] OF

ARRAY [j..m] OF …;

(c) 1986 Knowledge Software Ltd, December 13, 19103 23

Types
Array Types

5.5.3 Array Bounds

Subscripts are not normally checked to be

within range.

Subscripts are checked, but this range

checking may be switched off.

Array bounds may be omitted from a

declaration when that array is single di-

mensioned and either a formal parameter

to a function or an externally defined

array.

The bounds may never be omitted from a

declaration.

CtoP generates a conformant array declaration for array parameters whose bounds have

been omitted. See page 63 for a discussion of how formal parameter declarations are

handled.

5.5.4 Operations

‘C’ has a restricted set of operations that may be performed on pointers. CtoP handles the

conversion.

5.6 Enumeration Types

Enumeration types associate an integer

value with each enumeration constant.

Enumeration types are distinct types.

The integer values assigned to the enu-

meration identifiers implicitly start at zero

and increase in increments of 1.

The integer values assigned to the enu-

meration identifiers implicitly start at zero

and increase in increments of 1.

The integer value of enumeration iden-

tifiers may be overriden by an explicit

assignment.

The internal values of enumeration ident-

ifiers may not be overriden.

The integer values assigned to each enu-

meration identifier need not be unique.

The internal values assigned to each enu-

meration identifier are unique.

5.6.1 Detailed Semantics

To be expanded…

5.7 Structure Types

(c) 1986 Knowledge Software Ltd, December 13, 19103 24

Types
Structure Types

struct name {…}; TYPE name = RECORD … END;

struct {…} name; VAR name : RECORD … END;

struct sname {…} vname; TYPE sname = RECORD … END;

VAR vname : sname;

5.7.1 Operations on Structures

sname.cname sname.cname

spname->cname spname^.cname or spname.cname if spname

has been identified as a VAR parameter,

rather than a true pointer.

Structures may be returned by functions. Structures may not be returned by func-

tions.

See page 62 for more information on VAR parameters.

5.7.2 Components

The differences between ‘C’ and Pascal, if any, do not affect CtoP.

5.7.3 Structure Component Layout

There is an implied order of assigning variables to memory in ‘C’.

struct {

int a, b, c;

int d;

int e;

}

It is assumed that a is followed by b, then c, d and finally e.

In Pascal, no assumptions are made. In practice, the mechanics of most implementations

ensure that:

a) RECORD a, b, c : INTEGER; END

b) RECORD a : INTEGER; b : INTEGER; c : INTEGER; END

a) and b) have a different layout. b) is consistent with ‘C’, so fields should always be

declared singly.

CtoP generates separate declarations for each name to guarantee the same order in the

Pascal code:

(c) 1986 Knowledge Software Ltd, December 13, 19103 25

Types
Structure Types

int i, j, k; VAR

i : INTEGER;

j : INTEGER;

k : INTEGER;

5.7.4 Bit Fields

Packing of structs is done by specifying

field widths.

Packing of RECORDs is indicated by the

keyword PACKED.

The width of an integer component may be

specified in bits. This component should

be unsigned.

Fields may be declared as a subrange

0..2n-1 where n is the number of bits in the

field.

Some bit fields may be unnamed, to act as

padding only.

All fields must be named so a dummy

name must be generated for such fields.

5.7.5 Portability Problems

The use of bit fields in ‘C’ raises the question of packing and alignment strategies.

UCSD Pascal packs fields in the order in

which they are defined.

Fields may span byte boundaries.

Fields may not span word boundaries.

5.7.6 Sizes of Structures

The size of a structure includes any

padding necessary for alignment

considerations. e.g.,

struct { double f; char c; } may require

padding to align a double following the

struct.

The size of a structure includes only

internal padding for alignment.

Any type may start on any 16 bit word

boundary.

It possible that structure sizes may differ between ‘C’ and Pascal.

(c) 1986 Knowledge Software Ltd, December 13, 19103 26

Types
Union Types

5.8 Union Types

union {

int i;

char c[2];

}

RECORD CASE INTEGER OF

0 : (i : INTEGER);

1 : (c : ARRAY[0..1] OF CHAR);

END

For the equivalence of union name {…} and union {…} name, see §5.7 Structure Types
above, as the same conversion rules apply.

5.8.1 Union Component Layout

union overlays single components, so

struct is needed to group components

together in each "variant".

Variant records allow components to be

overlayed in memory.

struct overlay {

char tag;

union {

struct {

int quantity;

char part_id[2];

} E;

char buffer[4];

} U;

};

TYPE

S_IntChar = RECORD

quantity : INTEGER;

part_id : PACKED ARRAY [0..1] OF CHAR;

END;

U_SIntChar = RECORD CASE INTEGER OF

0 : (E : S_IntChar);

1 : (buffer : PACKED ARRAY [0..3] OF CHAR);

END;

overlay = RECORD

tag : CHAR;

U : U_SIntChar;

END;

The programmer could then improve these declarations, provided that U and E are not

accessed in the code, to:

TYPE

overlay = RECORD

tag : CHAR;

CASE INTEGER OF

0 : (quantity : INTEGER;

part_id : PACKED ARRAY[0..1] OF CHAR);

1 : (buffer : PACKED ARRAY[0..3] OF CHAR);

END;

(c) 1986 Knowledge Software Ltd, December 13, 19103 27

Types
Union Types

5.8.2 Sizes of Unions

The size of a union is the size of the largest component in that type. This rules applies for

both languages.

5.9 Function Types

A function may return an object of any

type except "array of …" or "function

returning …".

A function may only return a scalar type.

A function returning void returns no value. A function returning no value is declared

PROCEDURE.

5.10 Void

void fn(…) PROCEDURE fn(…);

‘C’ programmers often omit void, but CtoP will attempt to spot that "function returning

void" is intended (see §9 Functions).

5.11 Typedef Names

typedef is used to name a type:

typedef int *name;

Types are named by declaring them:

TYPE name = ^INTEGER;

5.11.1 Redefining Typedef Names

Typedef names follow the same scope and redefinition rules as variables.

5.11.2 Implementation Note

alpha (beta); is grammatically ambiguous in ‘C’. If alpha is a typedef-name, then this is a

declaration: beta is an alpha. Otherwise, alpha must be a function that takes beta as an

argument. CtoP correctly detects and handles this case.

5.12 Type Equivalence

These are the rules that decide if two types are the same. The rules are important in the

sense that operations between variables of two types may only be possible if these

equivalence rules hold.

(c) 1986 Knowledge Software Ltd, December 13, 19103 28

Types
Type Equivalence

In both languages names declared as typedef names are synonymous for types.

The ‘C’ type equivalence rules are much more lax than Pascal. CtoP generates names for

any equivalent types that are used more than once and do not yet have a name. Whenever

CtoP encounters an anonymous type it compares that type with those it already knows

about. This comparison is done using the ‘C’ equivalence rules modified to incorporate

extra discrimination (described below). If a match is found and a name already exists that

name is used else a new name is created and used.

In ‘C’, equivalent types may be interchanged and so are commonly unnamed. In Pascal,

types are not equivalent even when they are textually the same. e.g., two variables of type

^INTEGER may not be assigned unless ^INTEGER is named (say P_Int) and the named type

is used for both variables.

Because CtoP generates one name for all equivalent types, the problems of type

equivalence disappear in the translated program.

5.12.1 Array Types

Two arrays of known size are equivalent if

they have the same number of entries and

their element types are the same.

Two ararys are equivalent if there were

defined with the same name.

Two arrays, one whose size is omitted, are

the same if the element types are

equivalent.

A conformant arrays.

If an array definition used a define name to specify the number of element that name is

carried over to the output by CtoP, ie

#define max_lines 24

int l[max_lines];

l :Array[max_lines] Of Integer;

Note that this usage creates an array with one more element than its ‘C’ equivalent. In

comparing arrays for equivalence any define names used in their declaration are taken into

account.

#define twenty_four 24

int xyz[twenty_four];

CtoP does not consider l and xyz to be equivalent, even though they have the same number

of elements.

(c) 1986 Knowledge Software Ltd, December 13, 19103 29

Types
Type Equivalence

5.12.2 Enumeration, Structure and Union Types

‘C’ uses the same rules as Pascal: only named structs etc can be equivalent, unless the

variables are declared in the same declaration:

struct cell { int i; };

struct cell x, y;

struct cell z;

struct { int i; } a, b;

struct { int i; } c;

x, y and z are equivalent. a and b are equivalent.

CtoP will actually make all six variables equivalent, but this does not introduce any

problems:

TYPE

cell = RECORD

i : INTEGER;

END;

…

VAR

x : cell;

y : cell;

z : cell;

a : cell;

b : cell;

c : cell;

Note that the named type has been used throughout. CtoP attempts to use type names

supplied in the ‘C’ source, if possible.

5.12.3 Typedef Names

‘C’ defines typedef-names as being synonyms for the type they are declared as. Thus, in the

following, all the variables have the same type:

typedef int *iptr;

typedef int scalar;

int *p;

scalar *q;

iptr r;

(c) 1986 Knowledge Software Ltd, December 13, 19103 30

Types
Type Names And Abstract Declarators

5.13 Type Names And Abstract Declarators

‘C’ allows anonymous types to appear in casts and as the argument of sizeof.

CtoP will generate a name for these types (see page 66).

(c) 1986 Knowledge Software Ltd, December 13, 19103 31

Chapter 6

Type Conversions

‘C’ provides many implicit conversions between types. These lead many ‘C’ programmers

to become very lax about types; int and char tend to be mixed when small positive values

are being manipulated, pointers and arrays are similarly confused, and so on.

A cast expression may explicitly convert a

value to another type.

There are a few built-in conversion func-

tions.

Implicit type conversions occur in ex-

pressions.

Implicit type conversions never occur.

Implicit type conversions occur in par-

ameters to function.

Implicit type conversions never occur.

Explicit conversions allow programmers to override data structure by imposing their own,

e.g., when an array of characters (treated simply as bytes of data) is accessed under the

template of a structure:

char data[n]; /* output buffer */

struct entry {

int quantity;

char part_id [2];

};

/* set 3rd entry to "4 of part Ai" */

* (int *) &data[8] = 4;

strcpy((struct entry *) &data[8] -> part_id, "Ai");

Explanation: If data were overlayed by an "array of struct entry", then, since sizeof(struct

entry) is 4 (generally), &data[8] is the address of the third struct entry

(data[0 through 3] cover the first struct entry, data[4 through 7] cover the

second and so on)

&data[8] is the address of the 8th character in data, and has type "pointer to

char".

Cast to "pointer to int", it is dereferenced to set quantity.

Cast to "pointer to struct entry", it is dereferenced and the part_id set to the

required value; strcpy is a standard ‘C’ routine to assign strings.

(c) 1986 Knowledge Software Ltd, December 13, 19103 32

Type Conversions

This sort of thing tends to happen because ‘C’ programmers don’t take the trouble to define

their data structures explicitly.

In Pascal, of course, the programmer is required to be precise and to explicitly declare the

overlaying implied in the above ‘C’ example.

See page 27 for an example of how unions can be used, and what Pascal code is implied.

6.1 Representation Changes

Signed integer types are assumed (by CtoP) to be held in 2’s complement form.

No assumptions are made (or are needed) about how floating-point types are held.

Information may be lost due to truncation when a larger type is assigned to a smaller one.

Explicit casting may produce the same effect e.g., (int) (char) i will narrow i, then widen it.

This sort of change is implementation dependent as it relies upon the underlying

representation.

UCSD provides long integers (usually represented in BCD form) to hold values larger than

INTEGER will allow. These may be used to represent ‘C’s long ints, provided bit

manipulation is not required.

To be expanded…

6.2 Trivial Conversions

The differences between ‘C’ and Pascal, if any, do not affect CtoP.

6.3 Conversions To Integer Types

6.3.1 From Integer Types

Unsigned integer types cause two problems.

1. Converting from signed to unsigned is defined to map i to j in the range 0..2n-1,

such that j = i mod 2n, for n-bit, unsigned integers.

Pascal subranges can only cover 0..2n-1 for n+1 bits.

2. Converting from unsigned to signed, the same congruency is used. Thus large

positive integers will become negative.

Again, the problem is the subrange available in Pascal.

CtoP will flag all such conversions.

To be expanded…

(c) 1986 Knowledge Software Ltd, December 13, 19103 33

Type Conversions
Conversions To Integer Types

6.3.2 From Floating-point Types

The result of this conversion is implementation dependent in ‘C’ (although rounding is

implied). CtoP leaves it up to the programmer to choose ROUND or TRUNC.

6.3.3 From Enumeration Types

Most compilers will perform implicit

conversion.

Explicit conversion can be achieved using

the built-in function ORD.

To be expanded…

6.3.4 From Pointer Types

Treated as an unsigned integer. An illegal conversion.

To be expanded…

6.4 Conversions To Floating-point Types

UCSD Pascal allows either single or double precision to exist, but not both at the same

time.

6.4.1 From Floating-point Types

Mixed use of float and double are flagged by CtoP.

6.4.2 From Integer Types

int expressions are converted to double in

those contexts requiring a floating type.

An INTEGER expression is never

implicitly converted to REAL type except

in one context, addition. A method of

explicitly converting an INTEGER to a

REAL expression is to add 0.0.

Pascal and ‘C’ have the same rules for integer to floating-point conversions.

6.5 Conversions To Structure And Union Types

A struct (or union) may only be assigned to another variable of the same type. This is the

same in both languages.

(c) 1986 Knowledge Software Ltd, December 13, 19103 34

Type Conversions
Conversions To Enumeration Types

6.6 Conversions To Enumeration Types

Performed using casts. No conversion of enumerated types are

available.

6.6.1 From Integer Types

Permissible provided an enumeration

identifier exists with the given integer

value.

Illegal.

6.7 Conversions To Pointer Types

To be expanded…

6.7.1 From Pointer Types

A "pointer to x" may be converted to the

type "pointer to y".

Only the NIL pointer may be used in any

pointer context.

6.7.2 From Integer Types

0 is assumed to be the null pointer.

Casts may be used to change type. No conversions are possible.

6.7.3 From Array Types

See §5.4 Pointer Types, §5.5 Array Types.

(c) 1986 Knowledge Software Ltd, December 13, 19103 35

Type Conversions
Conversions To Pointer Types

6.7.4 From Function Types

Assigning a function name to a pointer to

function causes an explicit conversion to

occur.

Functions may not be assigned.

6.8 Conversions To Array And Function Types

No such conversions are possible in either language.

6.9 Conversions To The Void Type

This conversion simply discards the value of an expression. Every statement in ‘C’ is an

expression whose value is discarded.

‘C’ expressions of the form a=b return b as the value. If this expression is used at the

statement level this value is discarded. CtoP spots assignments and assignment operations

at the statement level and simply creates an assignment. Those ‘C’ expressions that are not

legal Pascal statements are handled by assignments to dummy variables.

6.10 The Casting Conversions

Any of the preceding conversions may be

performed explicitly using a cast. See

page 45 for more details on casts.

Apart from the built-in functions there is

no other form of simple conversion.

6.11 The Assignment Conversions

In ‘C’ if the types of expressions on the left and right of an assignment do not agree, the

following, implicit, conversions are performed:

Left Hand Side Right Hand Side
any arithmetic type any arithmetic type

any pointer type the integer constant 0

pointer to … array of …

pointer to function function

In Pascal the types of the left and right handside of assignment statements must be the

same.

(c) 1986 Knowledge Software Ltd, December 13, 19103 36

Type Conversions
The Usual Unary Conversions

6.12 The Usual Unary Conversions

‘C’ performs some implicit conversions on operands. The aim is to reduce the number of

cases that operators have to deal with:

Original Operand Type Converted Type
char, short int

unsigned char unsigned

unsigned short unsigned

float double

array of … pointer to …

function returning … pointer to function returning …

6.13 The usual Binary Conversions

For binary operators, ‘C’ performs some conversions on their operands.

1. The unary conversions are applied.

2. If one operand is of type T, then the other is converted to that type, where T is

checked to be, in order,

a) double

b) unsigned long int

c) long int

d) unsigned

e) long

f) int

so both operands end up as large as the larger of the two.

Pascal will float integer expressions within an expression if one of the operands has type

real.

6.14 The Function Argument Conversions

The unary conversions are performed on arguments before they are passed as actual

arguments. See above.

6.15 Other Functions Conversions

See §9.4 Adjustments To Parameter Types.

(c) 1986 Knowledge Software Ltd, December 13, 19103 37

Chapter 7

Expressions

7.1 Objects and Lvalues

For information only:

‘C’ has the concept of an object, lvalue and rvalue.

An object is a region of memory that can have values stored into or read from it.

A lvalue is an expression that refers to an object.

A rvalue is an expression that produces a value.

The difference between a lvalue and a rvalue is that lvalues can have the objects they point

to changed, i.e., by assignment.

Pascal does not have these concepts. It does talk about variable-access and value-access.

At the level of the programmer reading source code these designations are not worth

worrying about. Here we will give the rules and describe the differences regarding what can

occur where.

7.2 Expressions and precedence

Some binary operators associate to the

right.

All operators associate to the left.

The precedence of some operators differ between the two languages. CtoP will insert

parenthesis where precedence differences exist across languages.

7.2.1 Kinds of expressions

‘C’ has a few oddities in this area. There are no constructs that cannot be handled by Pascal.

(c) 1986 Knowledge Software Ltd, December 13, 19103 38

Expressions
Expressions and precedence

7.2.2 Precedence and associativity of operators

Order of precedence, highest to lowest:

Unary

Postfix ++ --

Prefix ++ --

sizeof

casts

~

!

-

&

*

Unary

NOT

-

Binary

* / %

+ -

<< >>

< > <= >=

== !=

&

^

|

&&

||

? :

= += -= *= %= ^= |=

,

Binary

* / DIV MOD

+ -

= <> <= < >= >

AND

OR

7.2.3 Overflow

Overflow is not defined on signed values. An error occurs if the right operator of DIV

or MOD is zero.

Defined for unsigned values.

Since we are converting working programs overflow should not be a problem. There may

be situations where overflow occurs and the programmer has made use of this fact.

Provided the underlying representation is the same in both languages this should be ok.

(c) 1986 Knowledge Software Ltd, December 13, 19103 39

Expressions
Primary expressions

7.3 Primary expressions

7.3.1 Names

The name of a variable declared to be of

arithmetic, pointer, enumeration, struct or

union type is evaluated to an object of that

type and is a lvalue.

The name of a variable declared to be of

arithmetic, pointer, enumeration,

RECORD, BOOLEAN, CHAR or ARRAY to

an object of that type and is a lvalue.

The name of an array is not a lvalue. In

those contexts where the usual unary con-

versions are applied the name evaluates to

a pointer to the first element of that array.

The name of a function evaluates to that

function. It is not a lvalue. In those con-

texts where the usual unary conversions

are applied the function is converted to a

pointer to that function.

Label names may not be used in

expressions.

Typedef names may appear in cast

expressions

7.3.2 Literals

See page 6.

7.3.3 Parenthesis

Reordering of expressions involving par-

enthesis by the compiler is considered

reasonable.

A programmer may use parenthesis to

specify an order of evaluations. A

compiler may not change this order.

Some compilers do coercions of ex-

pressions within parenthesis.

‘C’s case is the most unsafe. Converting to Pascal therefore removes potential problems.

(c) 1986 Knowledge Software Ltd, December 13, 19103 40

Expressions
Primary expressions

7.3.4 Subscripts

Arrays may only have one dimension. Arrays may have more than one

dimension.

a[i++, j]=0;

is equivalent to:

i++; a[j]=0;

a[i, j]:=0;

a two dimensional array access.

This topic is more a cause of misunderstanding by the Pascal programmer when reading ‘C’

than a serious conversion problem. The same expression means two completely different

things in the two languages.

7.3.5 Component selection

The syntax rules for accessing addresses

of structures are different to those for

actual structures.

The syntax is the same in both cases.

struct cell temp, *head; TYPE

P_cell = ^cell;

…

VAR

temp : cell;

head : P_cell;

temp.val = 1;

head->val = 2;

temp.val := 1;

head^.val := 2;

Functions may return structures whose

fields are selected.

Functions may not return structures.

The programmer must add an extra argument and perform a procedure call with this

argument.

7.3.6 Function calls

(c) 1986 Knowledge Software Ltd, December 13, 19103 41

Expressions
Primary expressions

Functions may be called with missing, or

extra arguments.

The number of arguments to functions and

procedures must match those declared in

the function header.

It is possible to call functions via pointers

to functions.

Procedures and functions may be passed as

parameters but it is not possible to point to

them.

Parameters are widened at the point of

call.

Parameters must be the same type,

therefore no widening is necessary.

See page 37 for details of the widening operations.

Calls to functions via evaluation of a pointer to functions appears in the cross reference

listing.

7.4 Unary operator expressions

7.4.1 Casts

It is possible to explicitly convert one type

to another type.

A very restricted and predefined number

of conversions are available.

It is possible to perform a similar operation in Pascal via variant records.

Var

Two_Type :Record

Case Integer Of

0 :(Int :Integer);

1 :(Ch :^Char)

End;

Here we have overlayed an integer with a pointer to char. By dot selecting the appropriate

field we can access the same value as different types.

The types must have the same size; no truncation or widening is performed.

7.4.2 Sizeof

(c) 1986 Knowledge Software Ltd, December 13, 19103 42

Expressions
Unary operator expressions

Can give a variable or a type as the

parameter.

A UCSD extension allows a variable or a

(?) type.

May be applied to an arbitrary expression. May only be applied to names.

This is a compile time option. Thus sizeof(i++) does not cause i to be incremented.

7.4.3 Unary minus

For signed values the result is in the range

0-k.

As in ‘C’.

For unsigned values the result is in the

range 65536-k.

7.4.4 Logical negation

Equivalent to (X)==0. Converted to ((X)=0).

Returns 0 or 1. Returns FALSE or TRUE.

7.4.5 Bitwise negation

Performed on integer operands. NOT causes the bitwise negation P-code to

be generated in UCSD Pascal.

Flips each bit of its operand..

7.4.6 Address operator

Returns the address of a variable. Can be simulated with a function call.

This operator occurs in two contexts:

a) Address is required for pointing to a data structure.

b) An address is passed as a parameter to a function call. Here it would be acting like a

VAR parameter in Pascal or (a).

See page 62 for a discussion of how CtoP handles VAR parameters.

(c) 1986 Knowledge Software Ltd, December 13, 19103 43

Expressions
Unary operator expressions

7.4.7 Indirection

Performs indirection through a pointer. In most cases ^ is equivalent.

Usually used in the context of accessing parameters. In these situations passing the

parameter by VAR in Pascal has the desired effect (ie an address has been passed).

7.4.8 Preincrement operator

Increments an integer or pointer and

returns the incremented value.

Can be simulated with a function call in an

expression context.

b=++a; a:=a+1; b:=a;

7.4.9 Postincrement operator

Increments an integer or pointer and

returns the old value.

Can be simulated with a function call in an

expression context.

b=a++; b:=a; a:=a+1;

7.4.10 Predecrement operator

Decrements an integer or pointer and

returns the decremented value.

Can be simulated with a function call in an

expression context.

b=--a; a:=a-1; b:=a;

7.4.11 Postdecrement operator

Decrements an integer or pointer and

returns the old value.

Can be simulated with a function call in an

expression context.

b=a--; b:=a; a:=a-1;

(c) 1986 Knowledge Software Ltd, December 13, 19103 44

Expressions
Binary operators

7.5 Binary operators

7.5.1 Multiplicative operators

’/’ can be applied to any arithmetic type. DIV for integer operands, ’/’ for reals.

7.5.2 Additive operands

Arithmetic may be performed on pointer

types.

Arithmetic may not be performed on

pointers.

See page 24 for a discussion of enumerated types.

7.5.3 Shift operator

To be simulated with function calls. Note that shifting long ints will not have the assumed

effect in UCSD Pascal.

7.5.4 Inequality operator

May be performed on pointers. May not be performed on pointers.

Use with enumerated types is dependent

on the model employed to handle

enumerated types.

7.5.5 Equality operators

Problems arise in the area of unsigned conversions.

To be expanded…

(c) 1986 Knowledge Software Ltd, December 13, 19103 45

Expressions
Binary operators

7.5.6 Bitwise AND

Performed between integer operands. Standard Pascal specifies that AND returns

a result of TRUE or FALSE (represented by

1 and 0 respectively). UCSD Pascal ANDs

each bit of the two operands.

7.5.7 Bitwise OR

Performed between integer operands. Standard Pascal specifies that OR returns a

result of TRUE or FALSE. UCSD Pascal

ORs each bit of the two operands.

7.5.8 Bitwise XOR

Performed between integer operands. Not available in standard Pascal. Can be

simulated by inline code in UCSD Pascal.

7.6 Logical operator expressions

Return the value 0 or 1. Standard Pascal defines that FALSE (0) or

TRUE (1) should be returned. UCSD

Pascal performs bitwise operations. x AND

TRUE is guaranteed to return zero or one.

7.6.1 Logical AND operator

i && j (i<>0) AND (j<>0) (see above)

7.6.2 Logical Or operator

(c) 1986 Knowledge Software Ltd, December 13, 19103 46

Expressions
Logical operator expressions

i || j (i<>0) OR (j<>0) (see above)

7.7 Conditional expressions

A ternary operator which provides an

expression form of if (…)…else…

This operator is not available.

Only one of the then expression or the else expression is evaluated, and returned.

Substituting a Pascal function call may not have the equivalent effect.

z = a ? b++ : c++; z := IfThenElse(a, Inc(b), Inc(c));

Because all arguments to the function call are evaluated both b and c will be incremented.

CtoP checks for expressions containing side effects. Conditional expressions free of side

effects are output as function calls to IfThenElse. Conditional expressions containing side

effects are output as follows:

(*
FUNCTION F_a(q :BOOLEAN) :INTEGER;

BEGIN

IF q THEN

F_a:=Inc(b)

ELSE

F_a:=Inc(c)

END;

*)

z := F_a(a);

7.8 Assignment expressions

In ‘C’ assignment is a binary operator. This means that it may occur at the statement or

expression level. Assignment operators are right associative (all other ‘C’ operatots are left

associative). To be expanded out where possible. In other cases to be simulated by a

function call.

(c) 1986 Knowledge Software Ltd, December 13, 19103 47

Expressions
Assignment expressions

7.8.1 Simple assignments

On assignment arrays are converted to

pointers to the first element of that array.

On assignment the contents of the array on

the right handside are copied into the

memory locations occupied by the array

on the left handside.

On assignment functions are converted to

pointers to functions.

Functions or procedure may not be

assigned.

CtoPwill correctly handle the array case. Assigning of functions or procedures results in an

entry in the cross reference listing. See §? for details.

7.8.2 Compound assignment

i+=j; i:=i+j;

a[l++]*=k; a[l]:=a[l]*k; l:=l+1;

CtoP detects the precence of side effects on the left handside of the compound assignment

and outputs a function form TimesEqual(a[Postplus(l)], k) of the expression. Where possible

CtoP expands the compound assignment into its full form.

7.9 Sequential expressions

i=1, j=2; i:=1; j:=2;

x=i++, j; i:=i+1; x:=j;

At the statement level CtoP expands comma expressions into individual statements. At the

expression level a function call is used.

7.10 Constant expressions

Compiler required to reduce constant

expressions.

A constant expression may not be given

where a constant is required.

Will be automatically handled by the CtoP preprocessor.

(c) 1986 Knowledge Software Ltd, December 13, 19103 48

Expressions
Order of evaluation

7.11 Order of evaluation

Boolean expressions must be short

ciruited.

All subexpressions in a boolean expression

must be evaluated.

a && b is defined as

if (a)

b

else

0

a || b is defined as

if (a)

1

else

b

Programmers may rely on short circuit evaluation in order to prevent out of range errors:

if (i < BUFSIZ && buf[i] != 1)… IF (i < BUFSIZ) AND (buf[i] <> 1) THEN …

This will cause an error if i is >= BUFSIZ

since buf[i] will always be evaluated.

CtoP does not do anything about this situation.

7.12 Discarded values

An expression is a legal statement. An expression on its own is not a legal

statement.

Handled by assigning the expression to a dummy variable.

7.13 Compiler optimisations

We assume that any compiler optimisations are performed such that the original semantics

are retained.

(c) 1986 Knowledge Software Ltd, December 13, 19103 49

Expressions
The Big Fake

7.14 The Big Fake

Pointer arithmetic may be performed. Pointer arithmetic may not be performed.

This feature is commonly used by ‘C’ programmers. The frequency of occurence coupled

with incomprehension by Pascal programmers decided the design. CtoP would attempt to

correctly translate this feature.

This is the one case where CtoP changes the structure of declarations and statements.

int a[10], *p, i;

i=*p++;

i=*++p;

p : ARRAY[0..1] OF ^INTEGER;

i :INTEGER;

i:=p[Post_Inc(p)]^;

i:=p[Pre_Inc(p)]^;

The right handside expression in Pascal makes use of the order of evaluation of expressions.

p is an ARRAY of two pointers. The zeroth element is the pointer obtained after applying

the increment/decrement operator. The first element is the current actual value of p. The

functions Post_Inc and Pre_Inc increment the parameter passed, set up the array elements and

return 0.

The code is dirty. We are forced into using it by the frequent use of pointer arithemtic in

‘C’ and our desire to provide a good translation.

(c) 1986 Knowledge Software Ltd, December 13, 19103 50

Chapter 8

Statements

Pascal contains all of the statement forms found in ‘C’, plus a few idiosyncrasies of its own.

8.1 General syntax

8.1.1 Semicolons

The ’;’ is part of the syntax of statements. The ’;’ is a separator.

CtoP will attempt to remove redundant semicolons.

8.1.2 Control expressions

Expressions that control conditional or

iterative statements are contained within

parenthesis.

Pascal contains extra keywords.

This feature is just part of the surface syntax.

8.2 Expression statements

Expressions may be statements, a=b is an

expression.

An expression is not a statement, a:=b is a

statement.

(a<b) ? a : b Can be simulated with a function call or IF

… THEN … ELSE.

8.3 Labelled statements

See page 5 for details of the conversion of labels.

(c) 1986 Knowledge Software Ltd, December 13, 19103 51

Statements
Compound statement

8.4 Compound statement

{

decl

stmt

}

BEGIN

stmt

END

Declarations may only appear in the

declaration part.

The declaration is moved to its appropriate Pascal context. The one situation where moving

the declaration may have other effects is the case of frequent allocation and deallocation of

large amounts of local storage. The storage consumed by the declaration in the compound

statement is freed up upon leaving the block. Thus a series of blocks each with their own

local storage would use the same actual storage in turn. By moving the storage to the

procedure level this storage is no longer shared. See page 11 for details about the handling

of nested declarations.

8.5 Conditional statements

See page 49 for a discussion on the evaluation of boolean expressions.

8.5.1 Dangling Else problem

‘C’ and Pascal resolve this problem the same way.

8.6 Iterative statements

8.6.1 While statement

while (expr)

stmt

WHILE (expr) DO

stmt

See page 49 for a discussion on the evaluation of boolean expressions.

(c) 1986 Knowledge Software Ltd, December 13, 19103 52

Statements
Iterative statements

8.6.2 Do statement

do

stmt

while (expr)

REPEAT

stmt

UNTIL NOT (expr)

CtoP will attempt to remove the NOT by reversing the boolean condition in (expr).

See page 49 for a discussion on the evaluation of boolean expressions. Converted into the

Pascal repeat statement.

8.6.3 For Statement

The ‘C’ for statement:

for (expr1; expr2; expr3)

stmt;

is equivalent to:

expr1;

while (expr2)

{

stmt;

expr3;

}

expr1;

WHILE expr2 DO

BEGIN

stmt;

expr3

END;

The ‘C’ for loop thus requires expr2 to be evaluated on every iteration. The various

vagaries of the ‘C’ for loop are be handled.

8.6.4 Multiple control variables

These are be correctly handled by CtoP.

8.7 Switch statement

(c) 1986 Knowledge Software Ltd, December 13, 19103 53

Statements
Switch statement

The case labels are bound to the switch by

semantic rules.

The case labels are bound to the CASE by

syntax rules.

case labels bind to the closest surrounding

switch.

Binding is automatic from the grammar.

case labels may prefix any statement

inside the switch compound.

Case labels have a statement body bound

to them

switch(x)

{

case 1: y=2;

if (b)

case 2: y=4;

}

Illegal Pascal.

Flow of control is not influenced by the

presence or absence of case labels.

Flow of control inside a compound

statement belonging to a case label

continues with the first statement after the

CASE on reaching the end of that

compound statement.

The label default specifies the code to be

executed if the selector does not match

any of the case labels.

If there is no label to match the selector

value execution continues with the first

statement after the CASE.

break causes the flow of control to goto

the first statement after the switch.

CtoP

• If a break is not the last statement before a case label a GOTO is inserted to cause

the Pascal flow of control to enter the following arm of the CASE.

• Any default option is carried over into the output file. The possible side effects

caused by evaluating the selector and fall through were considered too complex to

be handled automatically.

• case labels not at the correct level in the Pascal grammar sense, are flagged.

• If the selector expression has type char the values of the case labels must also have

type char. This will cause problems if the character escape feature of ‘C’ is used,

see page 7. CtoP will output that value surrounded by a CHR() . It is upto the

programmer to take appropriate action.

(c) 1986 Knowledge Software Ltd, December 13, 19103 54

Statements
Switch statement

Recommendations

If use has been made of the fall through of case labels in ‘C’ the case_statement_list should

be made into a procedure call, i.e.,

switch (c)

{

case ’a’: z=3;

case ’b’: m=4;

};

CtoP generates:

CASE c OF

’a’:BEGIN

z:=3;

GOTO 1

END;

’b’:BEGIN

1:

m:=4

END

END;

Programmer turns this into:

CASE c OF

’a’:BEGIN

z:=3;

Body_of_B

END;

’b’:Body_of_B

END;

where Body_of_B is a procedure containing the code from the body of the case label ’b’.

(c) 1986 Knowledge Software Ltd, December 13, 19103 55

Statements
Break and Continue

8.8 Break and Continue

8.8.1 Using break

{

…

break;

…

}

BEGIN

…

GOTO 1;

…

END;

1:

8.8.2 Using continue

{

…

continue;

…

}

BEGIN

…

GOTO 2;

…

2:

END;

8.9 Return statement

Causes the optional expression to be

assigned to the function name and the

function to return to the calling function.

Not available.

To be simulated by assigning to the function name and calling exit.

8.10 Goto statement

See page 5 for a discussion on labels. Converted to the equivalent Pascal.

8.11 Null statement

The ’;’ is a null statement in both languages.

(c) 1986 Knowledge Software Ltd, December 13, 19103 56

Chapter 9

Functions

There are functions. There are functions and procedures.

9.1 Function definitions

Functions may be called before they are

defined.

Procedures and functions must be defined

before use.

CtoP provides cross reference information to help the programmer order declarations.

To be expanded…

9.2 Function types

Unless explicitly specified a function

always returns a given type.

Procedures do not return a value. Func-

tions always return a value.

Functions may return anonymous types. A function always returns a named type.

See §10.4 for a discussion of how CtoP assigns names to anonymous types.

9.3 Formal parameter declarations

(c) 1986 Knowledge Software Ltd, December 13, 19103 57

Functions
Formal parameter declarations

The types of formal parameters may be

anonymous.

The type of a formal parameter must be a

named type.

Parameters are always passed by value. Parameters may be passed by VAR or by

value.

Parameters may be omitted. Parameters may not be omitted.

Extra parameters may be passed. Extra parameters may not be given.

9.4 Adjustment to parameter types

It is suggested that Pascal programmers sit down before continuing this section.

‘C’ specifies that certain adjustments must be made to function arguments when passed and

when accessed in the function body.

int f(c) int f(c)

char c; int c;

{ {

int i; int i;

i = c; …is equivalent to… i = (int)(char) c;

} }

Thus the argument passed is widened to an int after it is evaluated. Accesses to that

argument return narrowed values. The widening operations are given in §6.12. Many

compilers do not perform this widening and narrowing operation. Its effects only become

noticeable if:

1. The quantity being widened is treated as signed.

2. A value outside of the range of the parameter is passed. The programmer relying on

the top bits being truncated by the narrowing.

(c) 1986 Knowledge Software Ltd, December 13, 19103 58

Functions
Parameter passing conventions

9.5 Parameter passing conventions

All parameters are passed by value. Parameters may be passed by value or

address.

swap(a, b)

int *a, *b;

{

int temp;

temp=*a;

*a=*b;

*b=temp;

}

PROCEDURE swap(VAR a, b :INTEGER);

VAR

temp :INTEGER;

BEGIN

temp:=a;

a:=b;

b:=temp

END;

Giving an array as a parameter causes a

pointer to the first element of that array to

be passed.

For a value parameters a copy of the array

is made. For VAR parameters the address

of the base address of the array is passed.

Arrays of any size may be passed as

parameters to a given function.

Arrays passed as parameters must be the

same type as that given in the formal

parameter declaration, unless this is a

conformant array.

CtoP will attempt to spot parameters that should be passed by VAR. If it is decided that a

parameter is to be output as a VAR, occurrences of that variable in the body of the function

will not appear with an accompanying pointer dereference.

Because of the duality of arrays and pointers in ‘C’ it is not always possible to determine if

a formal parameter declared as a pointer to a type is simply that or a pointer to an array of

that type.

do_something(z)

char *z;

{

*z = ’a’;

z[0] =’a’;

}

CtoP looks at the context in which formal pointer parameters are used in order to determine

if an array is intended.

If CtoP can establish that the parameter really is an array, the parameter declaration is

altered to a conformant array and the parameter references in the function body are treated

appropriately.

(c) 1986 Knowledge Software Ltd, December 13, 19103 59

Functions
Parameter passing conventions

If CtoP cannot establish that the parameter is an array, but can establish that it is VAR, the

declaration is altered from "pointer to T" to "VAR T" with a conformant array declaration in

comments.

9.6 Agreement of formal and actual parameters

No checking is performed to ensure that

the type of the parameters passed to

functions match the type required by the

formal.

The type of the actual parameter must be

the same as the formal parameter.

CtoP assumes that any ‘C’ function returning a value is a function in the Pascal sense.

A cross reference list of calls to functions with non-matching arguments is provided.

To be expanded…

9.7 Function return types

A function may return any type except

"array of …" or "function returning …".

A function may only return scalar types.

Functions returning non-scalar types appear in the cross reference. It is suggested that an

extra parameter be added to the function and a value passed back through this parameter.

9.8 Agreement of actual and declared return type

Historically it has been possible to

return/not return values from any function.

A procedure does not return a value. A

function always returns a value.

‘C’ does specify that the result of not providing a return expression where one is required is

undefined.

(c) 1986 Knowledge Software Ltd, December 13, 19103 60

Chapter 10

Program structure

10.1 Introduction

Program execution starts with the first

statement of a function called main.

Program execution starts with the first

statement of the body belonging to the

PROGRAM heading.

The smallest object that can be linked is a

function.

The smallest object that can be linked is a

unit of compilation.

A linker is usually used to bind all of the

functions called by the main function and

all the functions that call, etc into one

code file.

A librarian or the operating system can be

used to locate and use the required units.

Functions can be compiled without any

reference to how they slot into the overall

program.

Individual functions may not be compiled

separately. A UNIT must be used to

encapsulate the code.

10.2 Units or include files

The programmer converting a ‘C’ program into Pascal has two choices:

1. Create one large program and use include files to import all of the necessary source

code.

2. Create units and use these units where needed.

Option 1. has the advantage of requiring the least amount of initial effort. However, a single

monolithic program will be difficult to develop and maintain.

Creating a suite of units will require a larger initial effort in man power. However,

independent units will be simpler to develop and maintain. With independent units it will

also be possible for several people to work on different parts of the program simultaneously.

(c) 1986 Knowledge Software Ltd, December 13, 19103 61

Program structure
What belongs in a unit?

10.3 What belongs in a unit?

CtoP makes the assumption that all of the source code in a single file is a potential unit.

Some of the source files will include other files. A method of specifying which files should

be considered as single units is provided. The convention is that those source files given as

input in the main control file are regarded as potential units. Each of these input files is

output to a separate file and has cross reference information associated with it.

The cross reference given for the output file is intended to provide the information needed

to create a compilable unit.

A UNIT will need declarations from elsewhere and other units will need information to be

exported from this unit.

CtoP automatically generates the INTERFACE and USES for each specified source UNIT.

CtoP also provides a list of all (external) identifiers referenced in a source unit that are not

defined anywhere within the suite of ‘C’ programs. Typically, such identifiers will be

library routines if the source of the library has not been supplied. This list is included in the

INTERFACE section of the translated program, preceded by a noticeable comment to that

effect.

10.4 Types

Typenames may be defined at the global

level in every compilable file.

Because of the explicit importing of other

units names must not clash. However, this

explicit importing means that type

definitions need not be redefined, the same

definition can be shared.

CtoP gives names to anonymous types.

In order to prevent type name clashes and reduce multiplicity of type definitions all global

type definitions and created types are output to a type unit. This type unit consists solely of

type definitions in its interface part. This unit is then USEd by every other compilation unit.

There is no runtime overhead incurred by placing type definitions in a single unit.

This TypeUnit also contains global variables generated by CtoP (such as C_Null_String).

(c) 1986 Knowledge Software Ltd, December 13, 19103 62

Chapter 11

The runtime library

‘C’ does not have the built-in functions and procedures that are available in Pascal (such as

WRITE, CHR and so on), but many routines are assumed to be available as part of a

"standard library". These routines include:

• Character operations e.g., isdigit, toupper

• Strings operations e.g., strcpy

• Mathematical operations e.g., abs

• Storage management e.g., malloc

• Input/Output operations e.g., printf, fopen

The declarations of these facilities usually appear in header files which are included by the

‘C’ programs that use them.

Some of the functions may be implemented as macros, others will be actual functions. CtoP

will expand out all the macro definitions.

If the source of any libraries used by the program is available, these may be used as the

basis of a Pascal UNIT implementing the ‘C’ runtime library. The runtime library may be

difficult to mimic since these routines usually make use of ‘C’s ability to pass arbitrary

arguments and perform type conversions.

Some library routines access and set an external error code variable. The variable and its

possible values are defined in the header file errno.h. These error codes are implementation

dependent but the following are standard:

/* global error code variable: */

extern int errno;

/* for mathematical functions: */

#define EDOM …

/* argument not in domain of function */

#define ERANGE …

/* result is out of range */

(c) 1986 Knowledge Software Ltd, December 13, 19103 63

The runtime library
Character Processing

11.1 Character Processing

11.1.1 Classification

int is…(c)

char c;

FUNCTION is…(c : CHAR)

: INTEGER;

e.g., isdigit returns a non-zero value (i.e., TRUE) if c is a digit (i.e., c IN [’0’..’9’]).

Some of these routines assume the ASCII character set with EOF defined as a special

character (-1) representing end-of-file.

11.1.2 Conversion

int to…(c)

char c;

FUNCTION to…(c : CHAR)

: INTEGER;

e.g., toint returns the "weight" of a (hexadecimal) digit: 0 for ’0’ … 9 for ’9’, 10 for ’A’ or

’a’ … 15 for ’F’ or ’f’

11.2 String Processing

‘C’ has the convention that strings are stored as "array of char", with a null character (’\0’)

as a terminator. e.g., the string "abc" is stored as ’a’, ’b’, ’c’, ’\0’, which has 4 elements.

The null string, written "", is represented as an array with one element, the null character.

The common string handling routines include:

strcat(s1,s2) appends s2 to s1 and returns s1 (char *). s1 must be large

enough to hold the result string.

strcmp(s1,s2) compare s1 with s2, using standard, lexicographical,

ordering, and return 0 if they are equal, n<0 if s1 is "less

than" s2, else return n>0. Usually -1 and 1 are returned on

inequality.

strcpy(s1,s2) copy s2 to s1, and return s1 (char *). Often used by ‘C’

programmers to move any block of (null character

terminated) data from one address to another.

strlen(s) return the number of characters (up to, but not including, the

null character) in the string s.

Other functions may be provided to search for a character within a string, and so on, but

usually ‘C’ programmers provide their own routines for anything more exotic than the

(c) 1986 Knowledge Software Ltd, December 13, 19103 64

The runtime library
String Processing

above.

11.3 Mathematical functions

These are generally self-explanatory, and most standard mathematical functions are

provided in Pascal.

11.4 Storage Management

‘C’ does not have a heap in the Pascal sense, but provides, through some "standard"

routines, a simple form of heap memory management.

A fixed, extern, data space is assumed which represents the heap. Storage may be requested

from, and returned to, this space using the following routines:

char *malloc(size)

unsigned size;

void free(ptr)

char *ptr;

malloc returns a pointer to a contiguous area, size characters long. free returns the area

pointed at by ptr to the storage pool.

struct cell {

struct cell *next;

…

};

TYPE cell = RECORD

next : ^ cell;

…

END;

struct cell *cp; VAR cp : ^ cell;

cp = (struct cell *)

malloc(sizeof(struct cell));

new(cp);

free(cp); dispose(cp);

Note that, in ‘C’, the pointer returned by malloc must be cast to the correct type, and that

the size of the structure must be specified.

CtoP will simply convert such ‘C’ source into Pascal. (see page 42 on casts) The

programmer must then modify the program to use the Pascal heap.*

11.5 Standard I/O

I/O in ‘C’ is handled by "standard" library routines. The header file stdio.h contains the

declarations of all the routines and data structures used for input/output.

* or write a Pascal equivalent to malloc and free that simulates the heap with some

global array.

(c) 1986 Knowledge Software Ltd, December 13, 19103 65

The runtime library
Standard I/O

End-of-file is defined to be a special "character" whose value is -1. stdio.h contains the

macro definition:

#define EOF (-1)

Input/Output routines refer to "streams" (the equivalent of Pascal’s file variables), which

have type "pointer to FILE". The standard input stream (the file variable INPUT in Pascal)

is called stdin, and the standard output stream (OUTPUT) is called stdout. A stream called

stderr is also declared (usually associated with the terminal) to which error messages may

be written.

11.5.1 Using stdin and stdout

int getchar()

int getc(stream)

FILE *stream;

reads the next character from stdin. EOF is returned when end-of-file is encountered.

getchar() is equivalent to getc(stdin).

int putchar(c)

char c;

int putc(c, stream)

FILE *stream;

write the character c to stdout, and return the (ASCII) value of that character. putchar(c) is

equivalent to putc(c, stdout).

char *gets(s)

char *s;

reads a string from stdin. gets reads up to newline or end-of-file, and returns the string made

up of all the characters read up to that point. The null pointer is returned if an error occurs,

else the address of s is returned.

int puts(s)

char *s;

writes the string s to stdout. Returns EOF if any error occurs.

(c) 1986 Knowledge Software Ltd, December 13, 19103 66

The runtime library
Standard I/O

c = getchar(); read(c);

putchar(c); write(c);

if ((c=getchar()) == EOF) … IF EOF(INPUT) THEN …

ELSE read(c);

int printf(format, arg1, arg2, …)

char *format;

printf is a truly horrible product of ‘C’s flexible functions! printf writes its arguments to

stdout, according to the formatting information in the string format (which also determines

how many arguments there should be).

int scanf(format, ptr1, ptr2, …)

char *format;

scanf is the sister of printf, for reading from stdin according to format, storing items read in

at locations addressed by its ptr-arguments.

11.5.2 File I/O

The ‘C’ standard library provides two levels of file access:

1. Via "streams", using FILE as mentioned above. Routines at this level operate on

and/or produce "streams" which are "pointer to FILE". The actual FILE objects are

allocated by routines such as fopen, and the programmer only declares pointers to

these. A FILE will contain such information as current position in file and the "file

descriptor" (see 2.)

2. Via "file descriptors". This is the low-level I/O. Most of the routines are very

similar to those used with "streams" except that they take an integer "file

descriptor" instead of a "stream". These "file descriptors" are indices into an

internal table containing relevant information needed by the file system.

Only the high-level routines are briefly described here.

FILE *fopen(pathname, type)

char *pathname, *type;

type is a string specifying the manner of access required:

"r" Open an existing file for reading.

"w" Create a new file, or truncate an existing one, for writing.

(c) 1986 Knowledge Software Ltd, December 13, 19103 67

The runtime library
Standard I/O

"a" Create a new file, or append to an existing one, for writing.

"r+" Open an existing file for update (i.e., reading and writing).

"w+" Create a new file, or truncate an existing one, for update.

"a+" Create a new file, or append to an existing one, for update.

FILE *s1, *s2; VAR s1, s2 : TEXT;

s1 = fopen("xyz:abc.text", "r"); reset(s1, "xyz:abc.text");

s2 = fopen("v:fred.text", "w"); rewrite(s2, "v:fred.text");

fclose(s1); close(s1);

if (fclose(s2) == EOF)

puts("Error closing s2\n");

close(s2);

IF IOresult <> 0 THEN

writeln(’Error closing s2’);

Most of the file I/O routines are similar to the stdin/stdout routines described above but

have "f" preceding the routine name and take an extra (final) argument which is a "stream".

int f…(…, stream)

FILE *stream;

There are a few exceptions to this; notably fprintf which has the "stream" as the first

argument.

int fread(ptr, size_of_ptr, count, stream)

char *ptr;

unsigned size_of_ptr;

int count;

FILE *stream;

This reads count items of size size_of_ptr into the buffer pointed at by ptr. If the first

argument passed has type "pointer to T", then the second argument should be sizeof(T).

fread returns 0 if no data was read or an error occurred, else it returns the number of items

actually read (which may be less than count).

int fwrite(ptr, size_of_ptr, count, stream)

This is the matching output routine to fread above.

long ftell(stream)

FILE *stream;

(c) 1986 Knowledge Software Ltd, December 13, 19103 68

The runtime library
Standard I/O

ftell returns the current file position for the given "stream". The result is suitable as a

second argument to fseek, below.

int fseek(stream, offset, type)

FILE *stream;

long offset;

int type;

Sets the current file position for the given "stream" according to the value of type:

0 Absolute - file position set equal to offset

1 Relative (to current position) - file position set equal to current position +

offset. offset may be positive or negative.

2 Relative (to end-of-file) - file position set to end-of-file + offset. Often used

to extend a file (on output, with a positive offset)

(c) 1986 Knowledge Software Ltd, December 13, 19103 69

Chapter 12

Cross reference information

12.1 Introduction

There are two aims in producing the cross reference information:

1. Help the programmer find his/her way about the original source code.

2. Highlight those areas where conversion work still has to be done. This information

in turn breaks down into to areas:

a) Where conversion still has to be done.

b) Information needed to convert a particular statement that is scattered

throughout the source.

The cross reference information occurs in two places:

1. In the output source file. This happens for those cases where the conversion can be

done in a purely local context.

2. In the cross reference file. Information gets written here for those conversions that

require extra global information to generate the correct equivalent Pascal.

12.2 Cross reference information in the Pascal output

12.2.1 Could be boolean

‘C’ does not have the data type boolean. Instead int is used. Zero signifies false, non-zero

true. CtoP looks at the contexts in which variables occur. Variables which appear in a

context requiring a BOOLEAN datatype are marked with a comment at the point of their

declaration.

12.2.2 Casts

The cast conversion is output in its ‘C’ form.

(c) 1986 Knowledge Software Ltd, December 13, 19103 70

Cross reference information
The cross reference file

12.3 The cross reference file

12.3.1 Functions called with incorrect arguments

The format of the cross reference information is:

Unit name - Information for functions in this unit

Function name Parameters

Called from unit name, function name, line number

Function name Parameters

Called from unit name, function name, line number

....

....

12.3.2 Functions assigned to pointers

The format of the cross reference information is:

Unit name - Information for functions in this unit

Function name Parameters

The format of the cross reference information is:

Unit name - Information for functions in this unit

Function name Name, function name where assigned to, line no

Function name Name, function name where assigned to, line no

....

....

12.3.3 Pointers to functions that are called

The format of the cross reference information is:

Unit name - Information for variables in this unit

(c) 1986 Knowledge Software Ltd, December 13, 19103 71

Cross reference information
The cross reference file

Variable name Unit name, function name where assigned to, line no

Variable name Unit name, function name where assigned to, line no

....

....

12.3.4 Mixed use of float and double in expressions

Occurrences of the use of mixed precision real arithmetic in expressions will be listed. The

format is:

Unit name - Information for variables in this unit

Function name, line number. If a global variable is used then the

unit in which that variable is declared.

....

....

(c) 1986 Knowledge Software Ltd, December 13, 19103 72

Contents

1 Introduction to CtoP 1

1.1 Using CtoP . 1

1.2 Reading this manual . 1

1.3 Which C? . 1

1.4 An overview of C programming . 2

2 Lexical Elements 3

2.1 Layout of the source code . 3

2.2 The source character set . 3

2.3 Comments . 3

2.4 Tokens . 4

2.5 Operators and separators . 4

2.6 Identifiers . 4

2.6.1 #define names . 5

2.6.2 Labels . 5

2.7 Reserved words . 5

2.8 Constants . 7

2.8.1 Integer constants . 7

2.8.2 Floating-point constants . 7

2.8.3 Character constants . 7

2.8.4 String constants . 7

2.8.5 Escape characters . 8

2.8.6 Character escape codes . 8

2.8.7 Numeric escape codes . 8

3 The C preprocessor 10

4 Declarations 11

4.1 Organization of Declarations . 11

4.2 Terminology . 11

4.2.1 Scope . 11

4.2.2 Visibility . 13

4.2.3 Forward References . 13

4.2.4 Overloading Of Names . 14

4.2.5 Duplicate Declarations . 14

4.2.6 Duplicate Visibility . 14

4.2.7 Extent . 16

(c) 1986 Knowledge Software Ltd, December 13, 19103 iii

Contents

4.2.8 Initial Values . 16

4.2.9 External Names . 16

4.3 Storage Class Specifiers . 16

4.3.1 Default Storage Class Specifiers . 18

4.4 Type Specifiers . 18

4.4.1 Default Type Specifiers . 18

4.4.2 Missing Declarators . 19

4.5 Declarators . 19

4.5.1 Simple Declarators . 19

4.5.2 Pointer Declarators . 19

4.5.3 Array Declarators . 20

4.5.4 Function Declarators . 20

4.5.5 Composition of Declarators . 21

4.6 Initializers . 21

4.6.1 Integers . 21

4.6.2 Floating-point . 21

4.6.3 Pointers . 21

4.6.4 Arrays . 21

4.6.5 Enumerations . 21

4.6.6 Structures . 21

4.6.7 Unions . 22

4.6.8 Other Types . 22

4.6.9 Eliding Braces . 22

4.7 Implicit Declarations . 22

4.8 External Names . 22

5 Types 23

5.1 Storage Units . 23

5.2 Integer Types . 23

5.2.1 Signed Integer Types . 24

5.2.2 Unsigned Integer Types . 24

5.2.3 Character Type . 25

5.2.4 Long Integers . 25

5.3 Floating-Point Types . 25

5.4 Pointer Types . 26

5.4.1 Pointer Arithmetic . 26

5.4.2 Some Problems With Pointers . 26

5.5 Array Types . 26

5.5.1 Arrays and Pointers . 27

5.5.2 Multidimensional Arrays . 27

5.5.3 Array Bounds . 27

5.5.4 Operations . 27

5.6 Enumeration Types . 28

5.6.1 Detailed Semantics . 28

5.7 Structure Types . 28

5.7.1 Operations on Structures . 28

(c) 1986 Knowledge Software Ltd, December 13, 19103 iv

Contents

5.7.2 Components . 29

5.7.3 Structure Component Layout . 29

5.7.4 Bit Fields . 29

5.7.5 Portability Problems . 30

5.7.6 Sizes of Structures . 30

5.8 Union Types . 30

5.8.1 Union Component Layout . 30

5.8.2 Sizes of Unions . 31

5.9 Function Types . 31

5.10 Void . 32

5.11 Typedef Names . 32

5.11.1 Redefining Typedef Names . 32

5.11.2 Implementation Note . 32

5.12 Type Equivalence . 32

5.12.1 Array Types . 33

5.12.2 Enumeration, Structure and Union Types . 33

5.12.3 Typedef Names . 34

5.13 Type Names And Abstract Declarators . 34

6 Type Conversions 35

6.1 Representation Changes . 36

6.2 Trivial Conversions . 36

6.3 Conversions To Integer Types . 36

6.3.1 From Integer Types . 36

6.3.2 From Floating-point Types . 37

6.3.3 From Enumeration Types . 37

6.3.4 From Pointer Types . 37

6.4 Conversions To Floating-point Types . 37

6.4.1 From Floating-point Types . 37

6.4.2 From Integer Types . 37

6.5 Conversions To Structure And Union Types . 37

6.6 Conversions To Enumeration Types . 38

6.6.1 From Integer Types . 38

6.7 Conversions To Pointer Types . 38

6.7.1 From Pointer Types . 38

6.7.2 From Integer Types . 38

6.7.3 From Array Types . 38

6.7.4 From Function Types . 39

6.8 Conversions To Array And Function Types . 39

6.9 Conversions To The Void Type . 39

6.10 The Casting Conversions . 39

6.11 The Assignment Conversions . 39

6.12 The Usual Unary Conversions . 40

6.13 The usual Binary Conversions . 40

6.14 The Function Argument Conversions . 40

6.15 Other Functions Conversions . 40

(c) 1986 Knowledge Software Ltd, December 13, 19103 v

Contents

7 Expressions 41

7.1 Objects and Lvalues . 41

7.2 Expressions and precedence . 41

7.2.1 Kinds of expressions . 41

7.2.2 Precedence and associativity of operators . 42

7.2.3 Overflow . 42

7.3 Primary expressions . 43

7.3.1 Names . 43

7.3.2 Literals . 43

7.3.3 Parenthesis . 43

7.3.4 Subscripts . 44

7.3.5 Component selection . 44

7.3.6 Function calls . 44

7.4 Unary operator expressions . 45

7.4.1 Casts . 45

7.4.2 Sizeof . 45

7.4.3 Unary minus . 46

7.4.4 Logical negation . 46

7.4.5 Bitwise negation . 46

7.4.6 Address operator . 46

7.4.7 Indirection . 46

7.4.8 Preincrement operator . 47

7.4.9 Postincrement operator . 47

7.4.10 Predecrement operator . 47

7.4.11 Postdecrement operator . 47

7.5 Binary operators . 48

7.5.1 Multiplicative operators . 48

7.5.2 Additive operands . 48

7.5.3 Shift operator . 48

7.5.4 Inequality operator . 48

7.5.5 Equality operators . 48

7.5.6 Bitwise AND . 49

7.5.7 Bitwise OR . 49

7.5.8 Bitwise XOR . 49

7.6 Logical operator expressions . 49

7.6.1 Logical AND operator . 50

7.6.2 Logical Or operator . 50

7.7 Conditional expressions . 50

7.8 Assignment expressions . 51

7.8.1 Simple assignments . 51

7.8.2 Compound assignment . 51

7.9 Sequential expressions . 51

7.10 Constant expressions . 52

7.11 Order of evaluation . 52

7.12 Discarded values . 52

7.13 Compiler optimisations . 53

(c) 1986 Knowledge Software Ltd, December 13, 19103 vi

Contents

7.14 The Big Fake . 53

8 Statements 54

8.1 General syntax . 54

8.1.1 Semicolons . 54

8.1.2 Control expressions . 54

8.2 Expression statements . 54

8.3 Labelled statements . 55

8.4 Compound statement . 55

8.5 Conditional statements . 55

8.5.1 Dangling Else problem . 55

8.6 Iterative statements . 55

8.6.1 While statement . 55

8.6.2 Do statement . 56

8.6.3 For Statement . 56

8.6.4 Multiple control variables . 56

8.7 Switch statement . 56

8.8 Break and Continue . 58

8.8.1 Using break . 58

8.8.2 Using continue . 59

8.9 Return statement . 59

8.10 Goto statement . 59

8.11 Null statement . 59

9 Functions 60

9.1 Function definitions . 60

9.2 Function types . 60

9.3 Formal parameter declarations . 60

9.4 Adjustment to parameter types . 62

9.5 Parameter passing conventions . 62

9.6 Agreement of formal and actual parameters . 63

9.7 Function return types . 64

9.8 Agreement of actual and declared return type . 64

10 Program structure 65

10.1 Introduction . 65

10.2 Units or include files . 65

10.3 What belongs in a unit? . 66

10.4 Types . 66

11 The runtime library 67

11.1 Character Processing . 68

11.1.1 Classification . 68

11.1.2 Conversion . 68

11.2 String Processing . 68

11.3 Mathematical functions . 69

(c) 1986 Knowledge Software Ltd, December 13, 19103 vii

Contents

11.4 Storage Management . 69

11.5 Standard I/O . 70

11.5.1 Using stdin and stdout . 70

11.5.2 File I/O . 71

12 Cross reference information 74

12.1 Introduction . 74

12.2 Cross reference information in the Pascal output . 74

12.2.1 Could be boolean . 74

12.2.2 Casts . 74

12.3 The cross reference file . 75

12.3.1 Functions called with incorrect arguments . 75

12.3.2 Functions assigned to pointers . 75

12.3.3 Pointers to functions that are called . 75

12.3.4 Mixed use of float and double in expressions . 76

(c) 1986 Knowledge Software Ltd, December 13, 19103 viii

