
The New C Standard (Usage, Figures, and Tables)

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002-2008 Derek M. Jones. All rights reserved.



CHANGES-5

CHANGES

-5Copyright © 2005, 2008 Derek Jones
The material in the C99 subsections is copyright © ISO. The material in the C90 and C++ sections that is
quoted from the respective language standards is copyright © ISO.
Credits and permissions for quoted material is given where that material appears.
THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE PARTICULAR WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN.

Commentary
The phrase at the time of writing is sometimes used. For this version of the material this time should be taken
to mean no later than December 2008.

29 Jan 2008 1.1 Integrated in changes made by TC3, required C sentence renumbering.
60+ recent references added + associated commentary.
A few Usage figures and tables added.
Page layout improvements. Lots of grammar fixes.

5 Aug 2005 1.0b Many hyperlinks added. pdf searching through page 782 speeded up.
Various typos fixed (over 70% reported by Tom Plum).

16 Jun 2005 1.0a Improvements to character set discussion (thanks to Kent Karlsson), margin
references, C99 footnote number typos, and various other typos fixed.

30 May 2005 1.0 Initial release.

v 1.1 January 30, 2008



CHANGES 0

0
With the introduction of new devices and extended character sets, new features may be added to this
International Standard. Subclauses in the language and library clauses warn implementors and programmers
of usages which, though valid in themselves, may conflict with future additions.

Certain features are obsolescent, which means that they may be considered for withdrawal in future revisions
of this International Standard. They are retained because of their widespread use, but their use in new
implementations (for implementation features) or new programs (for language [6.11] or library features [7.26])
is discouraged.

This International Standard is divided into four major subdivisions:

— preliminary elements (clauses 1–4);

— the characteristics of environments that translate and execute C programs (clause 5);

— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

Examples are provided to illustrate possible forms of the constructions described. Footnotes are provided to
emphasize consequences of the rules described in that subclause or elsewhere in this International Standard.
References are used to refer to other related subclauses. Recommendations are provided to give advice or
guidance to implementors. Annexes provide additional information and summarize the information contained
in this International Standard. A bibliography lists documents that were referred to during the preparation of
the standard.

The language clause (clause 6) is derived from “The C Reference Manual”.

The library clause (clause 7) is based on the 1984 /usr/group Standard.

ISO

JTC 1

TC 1
(Screw Threads)

TC 2

TC 4
(Rolling Bearings)

...

TC 243
(Civil Defence)

TC 244

Information
Technology

SC 2

SC 7
(Software and

Systems
Engineering)

...

SC 22

SC 23

...

SC 36
(Learning

Technology)

Programming
Languages

WG 3

WG 4
(COBOL)

WG 5
(FORTRAN)

...

WG 14
(C)

WG 15
(POSIX)

...

WG 21
(C++)

...

Figure 0.1: The ISO Technical Committee structure— JTC (Joint Technical Committee, with the IEC in this case), TC (Technical
Committee), SC (Standards Committee), WG (Working Group).

January 30, 2008 v 1.1



CHANGES0

1954

1960

1968

1966

1974

1977

1979

1980

1983

1985

1989

1990

1991

1992

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2007

IBM Mathematical
FORmula TRANslating System

FORTRAN

FORTRAN 66
ANSI X3.9-1966

COBOL
First officially published version

COBOL 68
published by USASI

FORTRAN 77
ANSI X3.9-1978

COBOL
ANSI X3.23-1974

COBOL
ISO 1989:1978

COBOL
ISO 1989:1985

FORTRAN ISO 1539-1980(E)

The C Programming Language
by Kernighan & Ritchie

ANSI C committee formed

Stroustrup starts work on C with classes

The C++ Programming Language
by Bjarne Stroustrup

Fortran 90 ISO 1539:1991(E)

ANSI C Standard ANSI X3.159-1989

Intrinsic Functions
ISO 1989:1985/Amd.1:1992

WG14 turns down offer
to standardise C++

Control of C Standard moves to
ISO/IEC JTC 1/SC22 WG14

ISO/IEC 9899:1990 published
ISO/IEC JTC 1/SC22 WG21 formed

ISO/IEC 9899/COR1:1994
Technical Corrigendum 1

C++ ISO/IEC 14882:1998

Fortran 95 ISO/IEC 1539-1:1997

Corrections
ISO 1989:1985/Amd.2:1994

ISO/IEC 9899/AMD1:1995
Amendment 1

C Integrity

COBOL
ISO 1989:2002

ISO/IEC 9899/COR1:1996
Technical Corrigendum 2

Work starts on
revising the C Standard

ISO/IEC 9899:1999 replaces
ISO/IEC 9899:1990

The Java Language Specification

Java withdrawn from ISO and
ECMA standardization process

Conditional Compilation
ISO/IEC 1539-3:1998

ISO/IEC 14882/TC1:2003
Technical Corrigendum 1

Varying Length Character Strings
ISO/IEC 1539-2:2000

ISO/IEC 9899:1999/Cor 1:2001
Technical Corrigendum 1

Fortran 2003 ISO 1539:2004(E)

ISO/IEC TR18037
Embedded C

ISO/IEC 9899:1999/Cor 2:2004
Technical Corrigendum 2

ISO/IEC TR18015
C++ Performance

ISO/IEC 9899:1999/Cor 3:2007
Technical Corrigendum 3

Figure 0.2: Outline history of the C language and a few long-lived languages. (Backus[8] describes the earliest history of Fortran.)

v 1.1 January 30, 2008



CHANGES 0

Instruction type

Pe
rc

en
ta

ge

add sub mult div and or xor sll srl sra fadd fsub fmul fdiv fabs total

0

25

50

75

100

SPEC

Mediabench

Figure 0.3: Dynamic frequency, percentage calculated over shown instructions (last column gives percentage of these instruction
relative to all instructions executed) during execution of the SPEC and MediaBench benchmarks of some computational oriented
instructions. Adapted from Yi and Lilja.[175]

Year

M
on

th
ly

 s
al

es
 (i

n 
10

00
’s

)

100,000

200,000

300,000

Jan 90 Jan 91 Jan 92 Jan 93 Jan 94 Jan 95 Jan 96 Jan 97 Jan 98 Jan 99 Jan 00 Jan 01

× 4 bits
• 8 bits
∆ 16 bits
. 32 bits

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•

×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•
×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•

×

.∆

•
×

.∆

•
×

.∆

•

×

.∆

•×

.∆

•
×

.∆

•

×

.∆

•
×

.∆

•
×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.
∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.
∆

•

×

.∆

•

×

.
∆

•

×

.
∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.∆

•

×

.
∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

Figure 0.4: Monthly unit sales of microprocessors having a given bus width. Adapted from Turley[168] (using data supplied by
Turley).

Static frequency

D
yn

am
ic

 fr
eq

ue
nc

y

1

2

3

5 6 7 8 9 10

×Digital VAX-11

×Motorola 68020
×Nat.Semi. 32016

×Intel 80386

×Harris HCX-9

×Concurrent 3230
×IBM RT

×AT&T 3B15

×Clipper

Figure 0.5: Dynamic/static frequency of call instructions. Adapted from Davidson.[51]

January 30, 2008 v 1.1



CHANGES0

Year
Pe

rf
or

m
an

ce

1

10

100

1,000

3,000

1980 1985 1990 1995 2000

•× •×
•
×

•
×

•
×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

CPU

DRAM

Figure 0.6: Relative performance of CPU against storage (DRAM), 1980==1. Adapted from Hennessy.[80]

Fetch 1 Fetch 2

Decode 1

Fetch 3

Decode 2

Execute 1

Fetch 4

Decode 3

Execute 2

Memory
access 1

Fetch 5

Decode 4

Execute 3

Memory
access 2

Write
back 1

Fetch 6

Decode 5

Execute 4

Memory
access 3

Write
back 2

time 1 time 2 time 3 time 4 time 5 time 6

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Figure 0.7: Simplified diagram of some typical stages in a processor instruction pipeline: Instruction fetch, decode, execute,
memory access, and write back.

Table 0.1: Percentage of reported problems having a given mean time to first problem occurrence (in months, summed over all
installations of a product) for various products (numbered 1 to 9), e.g., 28.8% of the reported faults in product 1 were, on average,
first reported after 19,000 months of program execution time (another 34.2% of problems were first reported after 60,000 months).
From Adams.[2]

Product 19 60 190 600 1,900 6,000 19,000 60,000

1 0.7 1.2 2.1 5.0 10.3 17.8 28.8 34.2
2 0.7 1.5 3.2 4.5 9.7 18.2 28.0 34.3
3 0.4 1.4 2.8 6.5 8.7 18.0 28.5 33.7
4 0.1 0.3 2.0 4.4 11.9 18.7 28.5 34.2
5 0.7 1.4 2.9 4.4 9.4 18.4 28.5 34.2
6 0.3 0.8 2.1 5.0 11.5 20.1 28.2 32.0
7 0.6 1.4 2.7 4.5 9.9 18.5 28.5 34.0
8 1.1 1.4 2.7 6.5 11.1 18.4 27.1 31.9
9 0.0 0.5 1.9 5.6 12.8 20.4 27.6 31.2

v 1.1 January 30, 2008



CHANGES 0

10% Sequential Range Selection

Q
ue

ry
 e

xe
cu

tio
n 

tim
e

20%

40%

60%

80%

100%

A B C D

• ••
••
•

••
••

••
••

10% Indexed Range Selection

100%

B C D

••
••

••
••
•

••
••
••

Join

100%

A B C D

••
••
•

••

••
••
••

Computation Memory stalls • Branch mispredictions Resource stalls

Figure 0.8: Execution time breakdown, by four processor components (bottom of graphs) for three different application queries
(top of graphs). Adapted from Ailamaki.[3]

Cases in sample

Pe
rc

en
t o

f p
op

ul
at

io
n 

es
tim

at
ed

 to
 h

av
e 

th
e 

pr
op

er
ty

40

60

80

100

1 3 20

Barratos-Obesity

Shreeble-Color
Shreeble-Nests

Floridium-Color
Floridium-Conductivity

Barratos-Color

Figure 0.9: Percentage of population estimated to have the sample property against the number of cases in the sample. Adapted
from Nisbett.[130]

January 30, 2008 v 1.1



CHANGES0

Table 0.2: Fault categories ordered by frequency of occurrence. The last column is the rank position after the fault fix weighting
factor is taken into account. Based on Perry.[138]

Rank Fault Description % Total
Faults

Fix
Rank

Rank Fault Description % Total
Faults

Fix
Rank

1 internal functionality 25.0 13 12 error handling 3.3 6
2 interface complexity 11.4 10 13 primitive’s misuse 2.4 11
3 unexpected dependencies 8.0 4 14 dynamic data use 2.1 15
4 low-level logic 7.9 17 15 resource allocation 1.5 2
5 design/code complexity 7.7 3 16 static data design 1.0 19
6 other 5.8 12 17 performance 0.9 1
7 change coordinates 4.9 14 18 unknown interactions 0.7 5
8 concurrent work 4.4 9 19 primitives unsupported 0.6 19
9 race conditions 4.3 7 20 IPC rule violated 0.4 16

10 external functionality 3.6 8 21 change management
complexity

0.3 21

11 language pitfalls i.e., use
of = when == intended

3.5 18 22 dynamic data design 0.3 21

Table 0.3: Underlying cause of faults. The none given category occurs because sometimes both the fault and the underlying cause
are the same. For instance, language pitfalls, or low-level logic. Based on Perry.[138]

Rank Cause Description % Total
Causes

Fix
Rank

1 Incomplete/omitted design 25.2 3
2 None given 20.5 10
3 Lack of knowledge 17.8 8
4 Ambiguous design 9.8 9
5 Earlier incorrect fix 7.3 7
6 Submitted under duress 6.8 6
7 Incomplete/omitted requirements 5.4 2
8 Other 4.1 4
9 Ambiguous requirements 2.0 1

10 Incorrect modifications 1.1 5

Table 0.4: Means of fault prevention. The last column is the rank position after the fault fix weighting factor is taken into account.
Based on Perry.[138]

Rank Means Description % Ob-
served

Fix
Rank

1 Application walk-through 24.5 8
2 Provide expert/clearer documentation 15.7 3
3 Guideline enforcement 13.3 10
4 Requirements/design templates 10.0 5
5 Better test planning 9.9 9
6 Formal requirements 8.8 2
7 Formal interface specifications 7.2 4
8 Other 6.9 6
9 Training 2.2 1

10 Keep document/code in sync 1.5 7

v 1.1 January 30, 2008



CHANGES 0

Probability of engineer (given 30)

Pr
ob

ab
ili

ty
 o

f e
ng

in
ee

r (
gi

ve
n

70
)

20

60

100

20 60 100

×

×
×

×
×

Figure 0.10: Median judged probability of subjects choosing an engineer, for five descriptions and for the null description
(unfilled circle symbol). Adapted from Kahneman.[90]

Alpha
Country

Beta
Country

X

Y

Z

Alpha
Country

Beta
Country

X

Y

Z

Congruent

Alpha
Country

Beta
Country

X

Y

Z

Alpha
Country

Beta
Country

X

Y

Z

Incongruent

Alpha
Country

Beta
Country

X

Y

Z

Alpha
Country

Beta
Country

X

Y

Z

Homogeneous

Figure 0.11: Country boundaries distort judgment of relative city locations. Adapted from Stevens.[158]

January 30, 2008 v 1.1



CHANGES0

Animal

is a is a

breathes
eats

has skin

Bird
has wings
can fly
has feathers

is a is a

Canary
can sing

is yellow
Ostrich

is tall

can’t fly

Fish

is a is a

has fins
can swim

has gills

Shark
can bite

is dangerous
Salmon

is pink
is edible

spawns upstream

Figure 0.12: Hypothetical memory structure for a three-level hierarchy. Adapted from Collins.[43]

Table 0.5: General properties of explanations and their potential role in understanding conceptual coherence. Adapted from
Murphy.[126]

Properties of Explanations Role in Conceptual Coherence

Explanation of a sort, specified over some
domain of observation

Constrains which attributes will be included in a concept
representation
Focuses on certain relationships over others in detecting
attribute correlations

Simplify reality Concepts may be idealizations that impose more structure
than is objectively present

Have an external structure— fits in with (or do
not contradict) what is already known

Stresses intercategory structure; attributes are considered
essential to the degree that they play a part in related theo-
ries (external structures)

Have an internal structure— defined in part by
relations connecting attributes

Emphasizes mutual constraints among attributes. May
suggest how concept attributes are learned

Interact with data and observations in some way Calls attention to inference processes in categorization and
suggests that more than attribute matching is involved

Table 0.6: Computation of pattern similarity. Adapted from Estes.[64]

Attribute 1 2 3 4 5 6

Starling + + - + + +
Sandpiper + + + + - +
Attribute similarity t t s3 t s5 t

Table 0.7: Computation of similarity to category. Adapted from Estes.[64]

Object Ro Bl Sw St Vu Sa Ch Fl Pe Similarity to Category

Robin 1 1 1 s s4 s s5 s6 s5 3 + 2s+ s4 + 2s5 + s6

Bluebird 1 1 1 s s4 s s5 s6 s5 3 + 2s+ s4 + 2s5 + s6

Swallow 1 1 1 s s4 s s5 s6 s5 3 + 2s+ s4 + 2s5 + s6

Starling s s s 1 s3 s2 s6 s5 s6 1 + 3s+ s2 + s3 + s5 + 2s6

Vulture s4 s4 s4 s3 1 s5 s3 s2 s3 1 + s2 + 3s3 + 3s4 + s5

Sandpiper s s s s2 s5 1 s4 s5 s4 1 + 3s+ s2 + s4 + s5

Chicken s5 s5 s5 s6 s3 s4 1 s 1 2 + s+ s3 + s4 + 3s5 + s6

Flamingo s6 s6 s6 s5 s2 s5 s 1 s 1 + 2s+ s2 + 2s5 + 3s6

Penguin s5 s5 s5 s6 s3 s4 1 s 1 2 + s+ s3 + s4 + 3s5 + s6

v 1.1 January 30, 2008



CHANGES 0

Shape

Color

Size

Figure 0.13: Representation of stimuli with shape in the horizontal plane and color in one of the vertical planes. Adapted from
Shepard.[149]

Table 0.8: Computation of weighted similarity to category. From Estes.[64]

Object Similarity Formula s = 0.5 Relative Frequency Weighted Similarity

Robin 3 + 2s+ s4 + 2s5 + s6 4.14 0.30 1.24
Bluebird 3 + 2s+ s4 + 2s5 + s6 4.14 0.20 0.83
Swallow 3 + 2s+ s4 + 2s5 + s6 4.14 0.10 0.41
Starling 1 + 3s+ s2 + s3 + s5 + 2s6 2.94 0.15 0.44
Vulture 1 + s2 + 3s3 + 3s4 + s5 1.84 0.02 0.04
Sandpiper 1 + 3s+ s2 + s4 + s5 2.94 0.05 0.15
Chicken 2 + s+ s3 + s4 + 3s5 + s6 2.80 0.15 0.42
Flamingo 1 + 2s+ s2 + 2s5 + 3s6 2.36 0.01 0.02
Penguin 2 + s+ s3 + s4 + 3s5 + s6 2.80 0.02 0.06

Table 0.9: Similarity to category (black triangle and black square assigned to category A; white triangle and white square assigned
to category B).

Stimulus Similarity to A Similarity to B

Dark triangle 1 + s s+ s2

Dark square 1 + s s+ s2

Light triangle s+ s2 1 + s
Light square s+ s2 1 + s

Table 0.10: Similarity to category (black triangle and white square assigned to category A; white triangle and black square
assigned to category B).

Stimulus Similarity to A Similarity to B

Dark triangle s+ s2 2s
Dark square 2s s+ s2

Light triangle 2s s+ s2

Light square s+ s2 2s

January 30, 2008 v 1.1



CHANGES0

I II III

IV V VI

Figure 0.14: One of the six unique configurations (i.e., it is not possible to rotate one configuration into another within the set of
six) of selecting four times from eight possibilities. Adapted from Shepard.[149]

I II III

IV V VI

Figure 0.15: Example list of categories. Adapted from Shepard.[149]

v 1.1 January 30, 2008



CHANGES 0

in line or function or macro

in line or function macro

in line function

in line or function or macro

in line function or macro

function macro

Figure 0.16: Possible decision paths when making pair-wise comparisons on whether to use a inline code, a function, or a macro;
for two different pair-wise associations.

Effort

R
el

at
iv

e 
ac

cu
ra

cy
(W

A
D

D
=1

)

0

0.25

0.5

0.75

1.0

0 50 100 150 200

WADD

EQW

MCD
LEX

EBA

RC

Figure 0.17: Effort and accuracy levels for various decision-making strategies; EBA (Elimination-by-aspects heuristic), EQW
(equal weight heuristic), LEX (lexicographic heuristic), MCD (majority of confirming dimensions heuristic), RC (Random
choice), and WADD (weighted additive rule). Adapted from Payne.[135]

Table 0.11: Storage/Execution performance alternatives.

Alternative Storage Needed Speed of Execution

X 7 K Low
Y 15 K High
Z 10 K Medium

Table 0.12: Inducement of intuitive cognition and analytic cognition, by task conditions. Adapted from Hammond.[76]

Task Characteristic Intuition-Inducing State of
Task Characteristic

Analysis-Inducing State of Task
Characteristic

Number of cues Large (>5) Small
Measurement of cues Perceptual measurement Objective reliable measurement
Distribution of cue values Continuous highly variable

distribution
Unknown distribution; cues are
dichotomous; values are discrete

Redundancy among cues High redundancy Low redundancy
Decomposition of task Low High
Degree of certainty in task Low certainty High certainty
Relation between cues and criterion Linear Nonlinear
Weighting of cues in environmental model Equal Unequal
Availability of organizing principle Unavailable Available
Display of cues Simultaneous display Sequential display
Time period Brief Long

January 30, 2008 v 1.1



CHANGES0

Subjects’ estimate of their ability
Pr

op
or

tio
n 

co
rr

ec
t

0.5

0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0

∆

∆ ∆
∆ ∆

∆

Easy Hard

Figure 0.18: Subjects’ estimate of their ability (bottom scale) to correctly answer a question and actual performance in answering
on the left scale. The responses of a person with perfect self-knowledge is given by the solid line. Adapted from Lichtenstein.[111]

Figure 0.19: Checker shadow (by Edward Adelson). Which of the two squares in-
dicated by the arrows is the brighter one (following inverted text gives answer)?
Both squares reflect the same amount of light (this can be verified by
covering all of squares except the two indicated), but the human visual system assigns a relative brightness that is
consistent with the checker pattern.

Table 0.13: Cognitive anomalies. Adapted from McFadden.[119]

Effect Description

CONTEXT
Anchoring Judgments are influenced by quantitative cues contained in the statement of the

decision task
Context Prior choices and available options in the decision task influence perception and

motivation
Framing Selection between mathematically equivalent solutions to a problem depends on how

their outcome is framed.
Prominence The format in which a decision task is stated influences the weight given to different

aspects
REFERENCE POINT
Risk asymmetry Subjects show risk-aversion for gains, risk-preference for losses, and weigh losses

more heavily
Reference point Choices are evaluated in terms of changes from an endowment or status quo point
Endowment Possessed goods are valued more highly than those not possessed; once a function

has been written
developers are loath to
throw it away and start
again
AVAILABILITY
Availability Responses rely too heavily on readily retrievable information and too little on back-

ground information
Certainty Sure outcomes are given more weight than uncertain outcomes
Experience Personal history is favored relative to alternatives not experienced
Focal Quantitative information is retrieved or reported categorically
Isolation The elements of a multiple-part or multi-stage lottery are evaluated separately
Primacy and Recency Initial and recently experienced events are the most easily recalled
Regression Idiosyncratic causes are attached to past fluctuations, and regression to the mean is

underestimated
Representativeness High conditional probabilities induce overestimates of unconditional probabilities
Segregation Lotteries are decomposed into a sure outcome and a gamble relative to this sure

outcome
SUPERSTITION
Credulity Evidence that supports patterns and causal explanations for coincidences is accepted

too readily
Disjunctive Consumers fail to reason through or accept the logical consequences of actions
Superstition Causal structures are attached to coincidences, and "quasi-magical" powers to

opponents
Suspicion Consumers mistrust offers and question the motives of opponents, particularly in

unfamiliar situations
PROCESS
Rule-Driven Behavior is guided by principles, analogies, and exemplars rather than utilitarian

calculus
Process Evaluation of outcomes is sensitive to process and change
Temporal Time discounting is temporally inconsistent, with short delays discounted too sharply

relative to long delays
PROJECTION
Misrepresentation Subjects may misrepresent judgments for real or perceived strategic advantage
Projection Judgments are altered to reinforce internally or project to others a self-image

v 1.1 January 30, 2008



CHANGES 0

Figure 0.20: The Thatcher illusion. With permission from Thompson.[165] The facial images look very similar when viewed in
one orientation and very different when viewed in another (turn page upside down).

General
Intelligence

Perceptual
Speed

Crystallized
Intelligence

Knowledge
and

Achievement

Number Computation
RT and Other Elementary Cognitive Tasks

Stroop
Clerical Speed
Digit Symbol

Verbal Comprehension
Lexical Knowledge

Reading Comprehension
Reading Speed

Cloze
Spelling

Phonetic Coding
Grammatical Sensitivity

Foreign Language
Communication

Listening
Oral Production

Oral Style
Writing

General School Achievement
Verbal Information and Knowledge

Information and Knowledge, Math and Science
Technical and Mechanical Knowledge

Knowledge of Behavioral Content

Ideational
Fluency

Learning
and

Memory

Fluid
Intelligence

Visual
Perception

Sequential Reasoning
Inductive Reasoning

Quantitative Reasoning
Piagetian Reasoning

Ideational Fluency
Naming Facility

Expression Fluency
Word Fluency

Creativity
Figural Fluency

Figural Flexibility

Memory Span
Associative Memory
Free Recall Memory
Meaningful Memory

Visual Memory

Visualization
Spatial Relations
Closure Speed

Closure Flexibility
Serial Perceptual Integration

Spatial Scanning
Imagery

Figure 0.21: A list of and structure of ability constructs. Adapted from Ackerman.[1]

Table 0.14: Words with either one or more than one syllable (and thus varying in the length of time taken to speak).

List 1 List 2 List 3 List 4 List 5

one cat card harm add
bank lift list bank mark
sit able inch view bar
kind held act fact few
look mean what time sum

ability basically encountered laboratory commitment
particular yesterday government acceptable minority
mathematical department financial university battery
categorize satisfied absolutely meaningful opportunity
inadequate beautiful together carefully accidental

January 30, 2008 v 1.1



CHANGES0

Visuo-spatial

sketch pad

Central

executive

Phonological

loop

Figure 0.22: Model of working memory. Adapted from Baddeley.[10]

Number of items

M
ea

n 
re

ac
tio

n 
tim

e 
(m

se
c)

200

400

500

600

1 2 3 4 5 6

∆×
∆× ∆×

∆×
∆×

∆×

∆ Positive

Negative

× Mean

Figure 0.23: Judgment time (in milliseconds) as a function of the number of digits held in memory. Adapted from Sternberg.[157]

Reciprocal of memory span (item-1)

Pr
oc

es
si

ng
 ti

m
e 

(m
se

c/
ite

m
)

20

40

60

80

0.1 0.2 0.3

• nonsense syllables
•random forms

• words•geometric shapes
• letters•colors

• digits

Figure 0.24: Judgment time (msec per item) as a function of the number of different items held in memory. Adapted from
Cavanagh[33]

Table 0.15: Proactive inhibition. The third row indicates learning performance; the fifth row indicates recall performance, relative
to that of the control. Based on Anderson.[6]

Subject 1 Subject 2 Subject 3

Learn A⇒B Learn C⇒D Rest
Learn A⇒D Learn A⇒B Learn A⇒D
Worse Better
Test A⇒D Test A⇒D Test A⇒D
Worse Worse

v 1.1 January 30, 2008



CHANGES 0

alpha beta

A

gamma

H

delta

L

epsilon

Q

zeta

U W

B I M R V X

C J N S Y

D K O T Z

E P

F

G

Figure 0.25: Semantic memory representation of alphabetic letters (the Greek names assigned to nodes by Klahr are used by
the search algorithm and are not actually held in memory). Readers may recognize the structure of a nursery rhyme in the letter
sequences. Derived from Klahr.[96]

Figure 0.26: One of the two pairs are rotated copies of each other.

Practice trials

Pr
op

or
tio

n 
er

ro
rs

0.04

0.1

0.2

0.3

0.5

1 3 5 7

×

×

×

×

×

×
×

Practice trials

R
ec

al
l t

im
e 

(s
ec

s)

0.5

1

1.4

1.8

2.3

1 3 5 7

×
×

× ×
× × ×

Figure 0.27: Proportion of errors (left) and time to recall (right) for recall of paired associate words (log scale). Based on
Anderson.[5]

January 30, 2008 v 1.1



CHANGES0

log (time + 1) in years

Te
st

 s
co

re

0

2

4

6

8

10

12

completion
1yr 2 mo

3yr 2 mo
5yr 9mo

9yr 6mo
14yr 7mo

25yr 1 mo
34yr 7mo

49yr 8mo

∆

×

∆

×

∆

×

∆

×

∆

×

∆

×

∆

×

∆

×

∆

×

five courses

three courses

one course

Figure 0.28: Effect of level of training on the retention of recognition of English–Spanish vocabulary. Adapted from Bahrick.[11]

Minerals

Metals Stones

Rare Common Alloys Precious Masonary

Platinum
Silver
Gold

Aluminum
Copper
Lead
Iron

Bronze
Steel
Brass

Sapphire
Emerald
Diamond

Ruby

Limestone
Granite
Marble
Slate

Figure 0.29: Words organized according to their properties— the minerals conceptual hierarchy. Adapted from Bower, Clark,
Lesgold, and Winzenz.[20]

Table 0.16: Retroactive inhibition. The fourth row indicates subject performance relative to that of the control. Based on
Anderson.[6]

Subject 1 Subject 2 Subject 3

Learn A⇒B Learn A⇒B Learn A⇒B
Learn A⇒D Learn C⇒D Rest
Test A⇒B Test A⇒B Test A⇒B
Much worse Worse

Table 0.17: Main failure modes for skill-based performance. Adapted from Reason.[143]

Inattention Over Attention

Double-capture slips Omissions
Omissions following interruptions Repetitions
Reduced intentionality Reversals
Perceptual confusions
Interference errors

v 1.1 January 30, 2008



CHANGES 0

Losses Gains

Value

Figure 0.30: Relationship between subjective value to gains and to losses. Adapted from Kahneman.[92]

Stated probability

D
ec

is
io

n 
w

ei
gh

t

0

0.5

1.0

0.5 1.0

Figure 0.31: Possible relationship between subjective and objective probability. Adapted from Kahneman.[92]

Table 0.18: Main failure modes for knowledge-based performance. Adapted from Reason.[143]

Knowledge-based Failure Modes

Selectivity
Workspace limitations
Out of, sight out of mind
Confirmation bias
Overconfidence
Biased reviewing
Illusory correlation
Halo effects
Problems with causality
Problems with complexity

Problems with delayed feed-back
Insufficient consideration of processes in time
Difficulties with exponential developments
Thinking in causal series not causal nets (unaware of side-effects of action)
Thematic vagabonding (flitting from issue to issue)
Encysting (lingering in small detail over topics)

Table 0.19: Main failure modes for rule-base performance. Adapted from Reason.[143]

Misapplication of Good Rules Application of Bad Rules

First exceptions Encoding deficiencies
Countersigns and nosigns Action deficiencies
Information overload Wrong rules
Rule strength Inelegant rules
General rules Inadvisable rules
Redundancy
Rigidity

January 30, 2008 v 1.1



CHANGES 1 Introduction0

Attribute 1

A
ttr

ib
ut

e 
2

•

•

y
1

x
1

•
•

y

x
•

•
y

2 x
2

Figure 0.32: Text of background trade-off. Adapted from Tversky.[169]

Table 0.20: Percentage of each alternative selected by subject groups S1 and S2. Adapted from Tversky.[169]

Warranty Price S1 S2

X1 $85 12%
Y1 $91 88%
X2 $25 84%
Y2 $49 16%
X $60 57% 33%
Y $75 43% 67%

Table 0.21: Percentage of subjects willing to exchange what they had been given for an equivalently priced item. Adapted from
Knetsch.[98]

Group Yes No

Give up mug to obtain candy 89% 11%
Give up candy to obtain mug 90% 10%

Table 0.22: Percentage of subjects giving each answer. Correct answers are starred. Adapted from Kahneman.[91]

Choice Less than 6 More than 6

The page investigator 20.8%* 16.3%
The line investigator 31.3% 42.9%*

About the same (i.e., within
5% of each other)

47.9% 40.8%

1. Introduction 20
1.1. Characteristics of the source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2. What source code to measure? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Usage

1 Introduction
This subsection provides some background on the information appearing in the Usage subsections of thisUsage

1
Usage
introduction

book. The purpose of this usage information is two-fold:

1. To give readers a feel for the common developer usage of C language constructs. Part of the process of
becoming an experienced developers involves learning about what is common and what is uncommon.
However, individual experiences can be specific to one application domain, or company cultures.

1 v 1.1 January 30, 2008



1 Introduction CHANGES 0

1a

B
el

ie
f

50

70

90

0 1 2

•

• •Strong-Weak

Weak-Strong

1b

B
el

ie
f

50

70

90

0 2

•

•
Strong-Weak

Weak-Strong

2a

90

0 1 2

•

•
•

Weak-Strong

2b

90

0 2

•

•Strong-Weak

Weak-Strong

3a

90

0 1 2

•

•

•

Positive-Negative

Negative-Positive

3b

90

0 2

•

•
Positive-Negative

Negative-Positive

Figure 0.33: Subjects belief response curves for positive weak–strong, negative weak–strong, and positive–negative evidence; (a)
Step-by-Step, (b) End-of-Sequence. Adapted from Hogarth.[83]

a b

Figure 0.34: Two proposed trajectories of a ball dropped from a moving airplane. Based on McCloskey.[118]

January 30, 2008 v 1.1 2



CHANGES 1 Introduction0

Condition
E

xa
m

pl
es

0

10

20

30

40

Alpha Inflate

•

•
conjunction

disjunction

Figure 0.35: Number of examples needed before alpha or inflate condition correctly predicted in six successive pictures. Adapted
from Pazzani[136]

Case 1

H: subjects hypothesis

T: target rule

U: all possible events

U

H T

Case 2

U

H

T

Case 4

U

H T

Case 3

U

T

H

Case 5

U

H T

Figure 0.36: Possible relationships between hypothesis and rule. Adapted from Klayman.[97]

3 v 1.1 January 30, 2008



1 Introduction CHANGES 0

2. To provide frequency-of-occurrence information that could be used as one of the inputs to cost/benefit
decisions (i.e., should a guideline recommendation be made rather than what recommendation might
be made). This is something of a chicken-and-egg situation in that knowing what measurements to

guideline
recom-
mendations
selectingmake requires having potential guideline recommendations in mind, and the results of measurements

may suggest guideline recommendations (i.e., some construct occurs frequently).

Almost all published measurements on C usage are an adjunct to a discussion of some translator optimization
technique. They are intended to show that the optimization, which is the subject of the paper, is worthwhile
because some constructs occurs sufficiently often for an optimization to make worthwhile savings, or that
some special cases can be ignored because they rarely occur. These kinds of measurements are usually
discussed in the Common implementation subsections. One common difference between the measurements
in Common Implementation subsections and those in Usage subsections is that the former are often dynamic
(instruction counts from executing programs), while the latter are often static (counts based on some
representation of the source code).
There have been a few studies whose aim has been to provide a picture of the kinds of C constructs that
commonly occur (e.g., preprocessor usage,[63] embedded systems[61]). These studies are quoted in the relevant
C sentences. There have also been a number of studies of source code usage for other algorithmic languages,
Assembler,[48] Fortran,[99] PL/1,[59] Cobol[4, 38, 88] (measurements involving nonalgorithmic languages have
very different interests[32, 41]). These are of interest in studying cross-language usage, but they are not
discussed in this book. In some cases a small number of machine code instruction sequences (which might
be called idioms) have been found to account for a significant percentage of the instructions executed during
program execution.[153]

The intent here is to provide a broad brush picture. On the whole, single numbers are given for the number of
occurrences of a construct. In most cases there is no break down by percentage of functions, source files,
programs, application domain, or developer. There is variation across all of these (e.g., application domain

coding
guidelines
applicationsand individual developer). Whenever this variation might be significant, additional information is given. coding
guidelines
coding styleThose interested in more detailed information might like to make their own measurements.

Many of the coding guideline recommendations made in this book apply to the visible source code as seen
by the developer. For these cases any usage measurements also apply to the visible source code. The effects
of any macro replacement, conditional inclusion, or #included header are ignored. Each usage subsection macro re-

placement
specifies what the quoted numbers apply to (usually either visible source, or the tokens processed during
translation phase 7).
In practice many applications do not execute in isolation; there is usually some form of operating system that
is running concurrently with it. The design of processor instruction sets often takes task-switching and other
program execution management tasks into account. In practice the dynamic profile of instructions executed
by a processor reflects this mix of usage,[17] as does the contents of its cache.[117]

1.1 Characteristics of the source code
All source code may appear to look the same to the casual observer. An experienced developer will be aware source code

characteristicsof recurring patterns; source can be said to have a style. Several influences can affect the characteristics of coding
guidelines
coding stylesource code, including the following:

• Use of extensions to the C language and differences, for prestandard C, from the standard (often known
as K&R C). Some extensions eventually may be incorporated into a revised version of the standard;
for instance, long long was added in C99. Some extensions are specific to the processor on which
the translated program is to execute.

common
implemen-
tations
language specifica-
tion• The application domain. For instance, scientific and engineering applications tend to make extensive

use of arrays and spend a large amount of their time in loops processing information held in these
arrays; screen based interactive applications often contain many calls to GUI library functions and can
spend more time in these functions than the developer’s code; data-mining applications can spend a
significant amount of time searching large data structures.

January 30, 2008 v 1.1 4



CHANGES 1 Introduction0

• How the application is structured. Some applications consist of a single, monolithic, program, while
others are built from a collection of smaller programs sharing data with one another. These kinds of
organization affect how types and objects are defined and used.

• The extent to which the source has evolved over time. Developers often adopt the low-risk strategyapplication
evolution

of making the minimal number of changes to a program when modifying it. Often this means that
functions and sequences of related statements tend to grow much larger than would be the case if they
had been written from scratch, because no restructuring is performed.

• Individual or development group stylistic usage. These differences can include the use of large or
small functions, the use of enumeration constants or object-like macros, the use of the smallest integermacro

object-like
1931

type required rather than always using int, and so forth.

1.2 What source code to measure?
This book is aimed at a particular audience and the source code they are likely to be actively working on.
This audience will be working on C source that has been written by more than one developer, has existed for
a year or more, and is expected to continue to be worked on over the coming years.
The benchmarks used in various application areas were written with design aims that differ from those of thisbenchmarks

book. For instance, the design aim behind the choice of programs in the SPEC CPU benchmark suite was to
measure processor, memory hierarchy, and translator performance. Many of these programs were written by
individuals, are relatively short, and have not changed much over time.
Although there is a plentiful supply of C source code publicly available (an estimated 20.3 million C source
files on the Web[18]), this source is nonrepresentative in a number of ways, including:

• The source has had many of the original defects removed from it. The ideal time to make these
measurements is while the source is being actively developed.

• Software for embedded systems is often so specialized (in the sense of being tied to custom hardware),
or commercially valuable, that significant amounts of it are not usually made publicly available.

Nevertheless, a collection of programs was selected for measurement, and the results are included in this
book (see Table 0.23). The programs used for this set of measurements have reached the stage that somebody
has decided that they are worth releasing. This means that some defects in the source, prior to the release,
will not be available to be included in these usage figures.

Table 0.23: Programs whose source code (i.e., the .c and .h files) was used as the input to measurement tools (operating on
either the visible or translated forms), whose output was used to generate this book’s usage figures and tables.

Name Application Domain Version

gcc C compiler 2.95
idsoftware Games programs, e.g., Doom
linux Operating system 2.4.20
mozilla Web browser 1.0
openafs File system 1.2.2a
openMotif Window manager 2.2.2
postgresql Database system 6.5.3

Table 0.24: Source files excluded from the Usage measurements.

Files Reason for Exclusion

gcc-2.95/libio/tests/tfformat.c a list of approximately 4,000 floating constants
gcc-2.95/libio/tests/tiformat.c a list of approximately 5,000 hexadecimal constants

5 v 1.1 January 30, 2008



CHANGES 82

...0101 ...0110 ...0111 ...1000

-∞ 0 +∞

+∞ 0 -∞
|
a

|
b

|
cx y

Figure 64.1: Some exactly representable values and three values (a, b, and c) that are not exactly representable.

Table 0.25: Character sequences used to denote those operators and punctuators that perform more than one role in the syntax.

Symbol Meaning Symbol Meaning

++v prefix ++ --v prefix --
v++ postfix ++ v-- postfix --
-v unary minus +v unary plus
*v indirection operator *p star in pointer declaration
&v address-of
:b colon in bitfield declaration ?: colon in ternary operator

42 implementation-defined behavior implementation-
defined behaviorunspecified behavior where each implementation documents how the choice is made

Usage
Annex J.3 lists 97 implementation-defined behaviors.

46 undefined behavior undefined
behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which this
International Standard imposes no requirements

Usage
Annex J.2 lists 190 undefined behaviors.

49 unspecified behavior unspecified
behavioruse of an unspecified value, or other behavior where this International Standard provides two or more

possibilities and imposes no further requirements on which is chosen in any instance

Usage
Annex J.1 lists 50 unspecified behaviors.

63 constraint constraint

restriction, either syntactic or semantic, by which the exposition of language elements is to be interpreted

Usage
There are 134 instances of the word shall in a Constraints clause (out of 588 in the complete standard). This
places a lower bound on the number of constraints that can be violated (some uses of shall describe more
than one kind of construct).

64 correctly rounded result correctly
rounded resultrepresentation in the result format that is nearest in value, subject to the effectivecurrent rounding mode, to

what the result would be given unlimited range and precision

82 In this International Standard, “shall” is to be interpreted as a requirement on an implementation or on a shall

program;

January 30, 2008 v 1.1



CHANGES98

Usage

The word shall occurs 537 times (excluding occurrences of shall not) in the C Standard.

83conversely, “shall not” is to be interpreted as a prohibition.

Usage

The phrase shall not occurs 51 times (this includes two occurrences in footnotes) in the C Standard.

84If a “shall” or “shall not” requirement that appears outside of a constraint is violated, the behavior is undefined.shall
outside constraint

Usage

The word shall appears 454 times outside of a Constraint clause; however, annex J.2 only lists 190 undefined
behaviors. The other uses of the word shall apply to requirements on implementations, not programs.

92The two forms of conforming implementation are hosted and freestanding.implementation
two forms

983) This implies that a conforming implementation reserves no identifiers other than those explicitly reserved infootnote
3 this International Standard.

Strictly
Conforming

C o
n

f

o

r

m
i

ng

Extensions

Figure 92.1: A conforming implementation (gray area) correctly handles all strictly conforming programs, may successfully
translate and execute some of the possible conforming programs, and may include some of the possible extensions.

v 1.1 January 30, 2008



CHANGES 116

Table 98.1: Number of developer declared identifiers (the contents of any header was only counted once) whose spelling (the
notation [a-z] denotes a regular expression, i.e., a character between a and z) is reserved for use by the implementation or future
revisions of the C Standard. Based on the translated form of this book’s benchmark programs.

Reserved spelling Occurrences

Identifier, starting with _ _, declared to have any form 3,071
Identifier, starting with _[A-Z], declared to have any form 10,255
Identifier, starting with wcs[a-z], declared to have any form 1
Identifier, with external linkage, defined in C99 12
File scope identifier or tag 6,832
File scope identifier 2
Macro name reserved when appropriate header is #included 6
Possible macro covered identifier 144
Macro name starting with E[A-Z] 339
Macro name starting with SIG[A-Z] 2
Identifier, starting with is[a-z], with external linkage (possibly macro covered) 47
Identifier, starting with mem[a-z], with external linkage (possibly macro covered) 108
Identifier, starting with str[a-z], with external linkage (possibly macro covered) 904
Identifier, starting with to[a-z], with external linkage (possibly macro covered) 338
Identifier, starting with is[a-z], with external linkage 33
Identifier, starting with mem[a-z], with external linkage 7
Identifier, starting with str[a-z], with external linkage 28
Identifier, starting with to[a-z], with external linkage 62

107 A C program need not all be translated at the same time. program
not translated
at same time

Usage

A study by Linton and Quong[113] used an instrumented make program to investigate the characteristics of
programs (written in a variety of languages, including C) built over a six-month period at Stanford University.
The results (see Figure 107.1) showed that approximately 40% of programs consisted of three or fewer
translation units.

116 1. Physical source file multibyte characters are mapped, in an implementation-defined manner, to the source translation phase
1character set (introducing new-line characters for end-of-line indicators) if necessary.

Translation units

Pr
og

ra
m

s

1

2

5

10

20

50

100

1 10 25 50 75

×

×
×

××
×
××××××

×

×

××
×

××

××××

×

×
×

××

×

×

×

×

×
×

×

×

× ×

× ××

×

Figure 107.1: Number of programs built from a given number of translation units. Adapted from Linton.[113]

January 30, 2008 v 1.1



CHANGES141

Table 116.1: Total number of characters and new-lines in the visible form of the .c and .h files.

.c files .h files

total characters 192,165,594 64,429,463
total new-lines 6,976,266 1,811,790
non-comment characters 144,568,262 43,485,916
non-comment new-lines 6,113,075 1,491,192

117Trigraph sequences are replaced by corresponding single-character internal representations.trigraph se-
quences
phase 1 Usage

The visible form of the .c files contain 8 trigraphs (.h 0).

1182. Each instance of a backslash character (\) immediately followed by a new-line character is deleted, splicingtranslation phase
2
physical source
line
logical source line

physical source lines to form logical source lines.

Usage
In the visible form of the .c files 0.21% (.h 4.7%) of all physical lines are spliced. Of these line splices 33%
(.h 7.8%) did not occur within preprocessing directives (mostly in string literals).

1243. The source file is decomposed into preprocessing tokens6) and sequences of white-space characterstranslation phase
3 (including comments).

Usage
The visible form of the .c files contain 30,901,028 (.h 8,338,968) preprocessing tokens (new-line not
included); 531,677 (.h 248,877) /* */ comments, and 52,531 (.h 27,393) // comments.
Usage information on white space is given elsewhere.

preprocess-
ing tokens

white space
separation

777

1356. Adjacent string literal tokens are concatenated.translation phase
6

Usage
In the visible form of the .c files 4.9% (.h 15.6%) of string literals are concatenated.

141All such translator output is collected into a program image which contains information needed for execution inprogram image

its execution environment.

Splices

Li
ne

s

1

10

100

1,000

10,000

1 10 100

×

×
× × ××

××××××
×××××

×
×
×
×××
×××

×
×

×
×
×
××
×××
×

×

×
×
××
×
×
×
××
×
××
×
×××××××

•

• •
•

• •
• • •

•
•••••••

•••••••
••
•••
•
•
•

•
••

•••
••

••
•
•
•
•

•

••

••

•

•

•
•
•

•

••

•
•

•
•
•

••

•
•
••
•

•

••
••
•

•••

•
•
•
•
•••••••••

••••
•
•
••• •

× .c files

• .h files

Spliced line length

1 10 100 1000

×××

×

××
×
×

×
×
×××××

×
×
×
×
×
×
××
×

××
×

×

×

×
×

××

×

×

×

×
××××××
×

×

×××
××××
×××
×
××××
×××××××
××
×
××××
××
×
×
×
××××
××
×××
×
×××××××
××
××
××××××
××××
×
×××××××
×
××××
×
××
×

×
×××
×
×
×
×
×
×
×
×
×
×

××××××
×××

×

××××
×
××××××

×
×
×

×
××
×
×
×
×

×
××
×
×
××
×××
×

×
×××××××××

×
××
×
××
×
×××

×

×
×

×××
×
×
×
×××
×××
××××
×
×

×
××
×

×
×

×××××

×
×

×
×
×
××××××
×××
××
××

×

×

×

×
×
×××

×

×
×
×

××
×
×
×

×
××
×
×

×

××××

×

××××
×
×

×
×

××
×××
×
×
×
×
×
××

××

×

×

×

×
×
×

×

×

×

×

×

××

×
×

×

×
×
×

×

×
×
×
×
×
×

×

×
×

××
×
××

×

××

×
×××
×

×
×
××

×

×

×
×

×

×

×
×
×

×

××
×
××

×××
×
×

×

××
×
××
×
×

×

×
×

×

×
×
×
×
×
×
××
×
×
×
×××
×

×
×
×
××

×
××
×
××
××

××

××
×
×
×
××
××××

×

××

×
×
×
×

×××

×
×

×
×
×××
××
××

×

××
×
×
×
××
××××
×
×
×

××

×

×
×

×

×××××
×
×
××
×
×
×

××
××
×
××
×

×
×
××
×
×

×

×
×
××××

×

××
×
×
×
×
×
×
××××
××
×
×
×
×
×
×
×
×
××
×
×
××
×
××
××
××

×××
×
×

×

××××
×
×

×

××
×
×

×

×

×

×××××
×
××××
×
×
×
×××

×

×
×
××××

×

×
×
×
×
×
×
××××
×
×××××
×
××××
×
×××
××
××

×

×
×
××
××
×××
×
×××××××××××××××××××××××××
×
×

××
×
×
×
××
××
××

×

××
×
×
××
×
×
×
×
××××××××××××××××
×
××××××××××××
×
×××××××
×
××××
×
××××××××××××
×
××××××××××××××
×
×××××
×
×××××××××××××××××××××××××

×
×××××××××××××
×
××××××××××××××××××××××

•
• •

•
•
•
•
•

•

•
•
•

•
•
•

•

•

•

•
•
••

•

••••
••
•
•
•
••
••
•••
•
•
•
••
•••
•
•
••
••••••••
••••••••••
•
•••••••••••••••••••••••

•••••••••
•••••••••••••••••••••••
••••••
•
•••
••••••••••
•
••••••
•
•
•

•
••••••
•••
•
••
•••
•••
•
•
•
••
•
••
•
••••••
•••
•
••••
••••••
•
•
•••
•••••••••
•••
•••••
•
••••••

•
••••••
•
••
•
•••••
•
••
•
•
•
••
•
•

•
•••
•
•
••
••••
••
•••
•
••••
•

•
•
•••
••

•

••••

•

•••
•••
•
•
•••
•
••

•

•
•

••
••••••
•

•
•
•••
•••
••
••••••••

•
•••
•
••
•••
•
••

•

•
•

•
••
•••••
••
•
••
••••
•

••
••

•

•
•

••
••

•

•

•
•
••
•

•
•
•
•••••

•

•
•
•
•
••
•

•

•

•
•

••••
•
••
••

••

•

•

••

•

•

••
•

••
••

•
•••

••
•
•

••

•

•

•••

•

•

•
•••
•
•
•

•

•
•

•
••
•
•
•
••

•

•

•

•
•
••
•

•
•

•

••

•
•
•

•
•
•

•

••

•

••
•

•

•

•

•

•

•

•••

••

••
•
•
•
•

•
•

•
•••
•
•
•
•••••

••

•
•

•

•••
•

•
••

•

•
•

•

•

•

•
•
•
•
•
•

•
••

•

••
•
••
•

•
•

•

•••••

•
•
•
•
••
•
•

••
•
•

•
••

•

•

•

••

•••
•

•

•

•

••

•
•
•
•

•
••
•

•
•

•

•

•
•

••

•

•
•••
•
•

•
•

•

•
•
••

•

•
•

•

•
•
•
•
•

•

•

•

•

•
•

•••
•

•
••

•

•
•
•

•

•••
•

•

••••
•••
•

•

••
•
•
•
••

•
•
•
••
••
•
•
•
•
••
•
•

••

•
•

•

•

•
•

•
•
•
•

•
•

•

••
•

•
•

•

•

•

•
•

•
•

•

•
••

•

•

•

•

••••
•

•

•

••
••
•••

••
•
•
•
•

••••
•
•

•••

•

•

•
••••
•

•
•

•
•
••
•

•

•

•
•
•

••
••
••

•
•
•

•••
•

•
••
•

•

•

•

•••

•

•

••

•••

•

•

••

••

•

•

••••
•••
•••••
•••

•

•

•

•
••

•
•
••
•

•
•
••

•

•
•••
•
•
•
•
••••
•
•

••
•
••

•
•
•
•

•

••
•
••

•

••

•

•
••
•

•

•
••

•

••

•

•

•
•

•

••

•

•

•

••

••

•
••
•
••
•

•
••
••

•

•

•

•
•

•

••

•
•

••
•
••

•

••
•
•

••

•
•
•••

•
••
•••

•
••
•

••

•

•
•

•

•
•
•
•

•
•
•

•

•••••
•
•
••
••

•

•
•

•

•

•
••
••
•
•

•
••
•••

•
••
•

•

•
•
•

••
•
••

•
••
••

•

••
••
•

•

•
•

•

•••
•
•
•
•••
•
•
•

•

•

•

••

•

••
••
•
•
•

•
••
•
••
•

•

•
•
•

•
•
•

••
•
•
•
•••••
••
•
•

•
•

•
•
•••
•
•

•

•••

•

•
•
••
•
•
•••

••

•

•
•

•

••
••
••
••
•
•
•
•••

•

•
•••
•
••
•
•••

•

•

•

•

•
•

••
•
•
••
•
•
••

•

••
•
•
•
••
•
•
•
•

•

•
•
•
••••
•••••
•
•

•

•

•

••
••
•
••
••
•
•

•

••

••

•

•
••
••
••••
•
••••••
••
••
•
•
•

••••
•
•
•
••••
•
••
•
•••••••
••
•
•••
••

•

••••••
••
•••

•

•
•
••••

•

•••••••••••••••••••
•
•
•
••••
•
•
•
••
•
•••••••••••
•
•••
•
•••••
•
•

•

•••••
•
••

•••

••••••••••

•

•••••

•
•
•

••
•••
••

•

•
•
••••••

•

•••

•
•
•

•

•••••
•
••••••••••
•
•••••••••••
••
••••••
•
••

•

•••

•

••••••
••
•••••••
•
•••••
•
••••••••••••••••••••••••••••••••
•
•••
•
••••••••••••••••••••••

•

•••••
•
•
•
••••
•
••••••••••

× .c files

• .h files

Figure 118.1: Number of physical lines spliced together to form one logical line and the number of logical lines, of a given
length, after splicing. Based on the visible form of the .c and .h files.

v 1.1 January 30, 2008



CHANGES 221

Table 141.1: Total is the number of code pages in the application; Touched the number of code pages touched during startup;
Utilization the average fraction of functions used during startup in each code page. Adapted from Lee.[106]

Application Total Touched (%) % Utilization

acrobat 404 246 ( 60) 28
netscape 388 388 (100) 26
photoshop 594 479 ( 80) 28
powerpoint 766 164 ( 21) 32
word 743 300 ( 40) 47

164 It shall be defined with a return type of int and with no parameters:

int main(void) { /* ... */ }

Usage
There was not a sufficiently large number of instances of main in the .c files to provide a reliable measure of
the different ways this function is declared.

190 An actual implementation need not evaluate part of an expression if it can deduce that its value is not used expression
need not eval-

uate part ofand that no needed side effects are produced (including any caused by calling a function or accessing a
volatile object).

221 Both the basic source and basic execution character sets shall have the following members: the 26 uppercase basic source
character set

basic execution
character set

letters of the Latin alphabet

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h i j k l m
n o p q r s t u v w x y z

the 10 decimal digits

0 1 2 3 4 5 6 7 8 9

Objects not referenced

F
un

ct
io

n 
de

fin
iti

on
s

1

10

100

1,000

10,000

0 2 4 6 8

× × Local objects×

×
×

×
× ×

× × × ×

• • Parameters
•

•
•

•
•

• •
•

• •

Objects with excessive scope

0 5 10 15

×

×
×

×
× × × × × × × × ×

×
×

×

Figure 190.1: Number of parameters or locally defined objects that are not referenced within a function definition (left graph);
number of objects declared in a scope that is wider than that needed for any of the references to them within a function definition
(right graph). Based on the translated form of this book’s benchmark programs.

January 30, 2008 v 1.1



CHANGES221

the following 29 graphic characters

! " # % & ’ ( ) * + , - . / :

; < = > ? [ \ ] ^ _ { | } ~

the space character, and control characters representing horizontal tab, vertical tab, and form feed.

Table 221.1: Occurrence of characters as a percentage of all characters and as a percentage of all noncomment characters (i.e.,
outside of comments). Based on the visible form of the .c files. For a comparison of letter usage in English language and
identifiers see Figure 792.16.

Letter
or
ASCII
Value

All Non-
comment

Letter
or
ASCII
Value

All Non-
comment

Letter
or
ASCII
Value

All Non-
comment

Letter
or
ASCII
Value

All Non-
comment

0 0.000 0.000 sp 15.083 13.927 @ 0.009 0.002 ‘ 0.004 0.002
1 0.000 0.000 ! 0.102 0.127 A 0.592 0.642 a 3.132 2.830
2 0.000 0.000 " 0.376 0.471 B 0.258 0.287 b 0.846 0.812
3 0.000 0.000 # 0.175 0.219 C 0.607 0.663 c 2.168 2.178
4 0.000 0.000 $ 0.005 0.003 D 0.461 0.523 d 2.184 2.176
5 0.000 0.000 % 0.105 0.135 E 0.869 1.012 e 5.642 4.981
6 0.000 0.000 & 0.237 0.311 F 0.333 0.355 f 1.666 1.725
7 0.000 0.000 ’ 0.101 0.080 G 0.243 0.263 g 0.923 0.906
8 0.000 0.000 ( 1.372 1.751 H 0.146 0.155 h 1.145 0.777
\t 3.350 4.116 ) 1.373 1.751 I 0.619 0.643 i 3.639 3.469
\n 3.630 4.229 * 1.769 0.769 J 0.024 0.026 j 0.074 0.077
11 0.000 0.000 + 0.182 0.233 K 0.098 0.116 k 0.464 0.481
12 0.003 0.004 , 1.565 1.914 L 0.528 0.609 l 2.033 1.915
\r 0.001 0.001 - 1.176 0.831 M 0.333 0.366 m 1.245 1.229
14 0.000 0.000 . 0.512 0.387 N 0.557 0.610 n 3.225 2.989
15 0.000 0.000 / 0.718 0.519 O 0.467 0.517 o 2.784 2.328
16 0.000 0.000 0 1.465 1.694 P 0.460 0.508 p 1.505 1.551
17 0.000 0.000 1 0.502 0.551 Q 0.033 0.037 q 0.121 0.135
18 0.000 0.000 2 0.352 0.408 R 0.652 0.729 r 3.405 3.254
19 0.000 0.000 3 0.227 0.262 S 0.691 0.758 s 3.166 2.961
20 0.000 0.000 4 0.177 0.203 T 0.686 0.740 t 4.566 4.200
21 0.000 0.000 5 0.149 0.171 U 0.315 0.349 u 1.575 1.510
22 0.000 0.000 6 0.176 0.209 V 0.128 0.149 v 0.662 0.682
23 0.000 0.000 7 0.131 0.144 W 0.131 0.135 w 0.494 0.385
24 0.000 0.000 8 0.184 0.207 X 0.213 0.254 x 0.870 1.002
25 0.000 0.000 9 0.128 0.122 Y 0.091 0.094 y 0.515 0.435
26 0.000 0.000 : 0.192 0.176 Z 0.027 0.033 z 0.125 0.135
27 0.000 0.000 ; 1.276 1.670 [ 0.163 0.210 { 0.303 0.401
28 0.000 0.000 < 0.118 0.147 \ 0.097 0.126 | 0.098 0.124
29 0.000 0.000 = 1.039 1.042 ] 0.163 0.210 } 0.303 0.401
30 0.000 0.000 > 0.587 0.762 ^ 0.003 0.002 ~ 0.009 0.012
31 0.000 0.000 ? 0.022 0.019 _ 2.550 3.238 127 0.000 0.000

v 1.1 January 30, 2008



CHANGES 243

Table 221.2: Relative frequency (most common to least common, with parenthesis used to bracket extremely rare letters) of letter
usage in various human languages (the English ranking is based on the British National Corpus). Based on Kelk.[94]

Language Letters

English etaoinsrhldcumfpgwybvkxjqz
French esaitnrulodcmpévqfbghjàxèyêzâçîùôûïkëw
Norwegian erntsilakodgmvfupbhøjyåæcwzx(q)
Swedish eantrsildomkgväfhupåöbcyjxwzéq
Icelandic anriestuðlgmkfhvoáþídjóbyæúöpéỳcxwzq
Hungarian eatlnskomzrigáéydbvhjőfupöócűíúüxw(q)

233
trigraph se-

quences
mappings

??= # ??) ] ??! |
??( [ ??’ ^ ??< }
??/ \ ??< { ??- ~

Usage

There are insufficient trigraphs in the visible form of the .c files to enable any meaningful analysis of the
usage of different trigraphs to be made.

234 No other trigraph sequences exist. trigraph se-
quences
no other

Usage

The visible form of the .c files contained 593 (.h 10) instances of two question marks (i.e., ??) in string
literals that were not followed by a character that would have created a trigraph sequence.

243 — A multibyte character set may have a state-dependent encoding, wherein each sequence of multibyte multibyte
character

state-dependent
encoding
shift state

characters begins in an initial shift state and enters other locale-specific shift states when specific multibyte
characters are encountered in the sequence.

Table 243.1: Commonly seen ISO 2022 Control Characters. The alternative values for SS2 and SS3 are only available for 8-bit
codes.

Name Acronym Code Value Meaning

Escape ESC 0x1b Escape
Shift-In SI 0x0f Shift to the G0 set
Shift-Out SO 0x0e Shift to the G1 set
Locking-Shift 2 LS2 ESC 0x6e Shift to the G2 set
Locking-Shift 3 LS3 ESC 0x6f Shift to the G3 set
Single-Shift 2 SS2 ESC 0x4e, or 0x8e Next character only is in G2
Single-Shift 3 SS3 ESC 0x4f, or 0x8f Next character only is in G3

Table 243.2: An implementation where G1 is ISO 8859–1, and G2 is ISO 8891–7 (Greek).

Encoded values 0x62 0x63 0x64 0x0e 0xe6 0x1b 0x6e 0xe1 0xe2 0xe3 0x0f

Control character SO LS2 SI
Graphic character a b c æ α β γ

January 30, 2008 v 1.1



CHANGES283

Table 243.3: ESC codes for some of the character sets used in Japanese.

Character Set Byte Encoding Visible Ascii Representation

JIS C 6226–1978 1B 24 40 <ESC> $ @
JIS X 0208–1983 1B 24 42 <ESC> $ B
JIS X 0208–1990 1B 26 40 1B 24 42 <ESC> & @ <ESC> $ B
JIS X 0212–1990 1B 24 28 44 <ESC> $ ( D
JIS-Roman 1B 28 4A <ESC> ( J
Ascii 1B 28 42 <ESC> ( B
Half width Katakana 1B 28 49 <ESC> ( I

Table 243.4: A JIS encoding of the character sequence 171202193250 (“kana and kanji”).

Encoded values 0x1b 0x24 0x42 0x242b 0x244a 0x3441 0x3b7a 0x1b 0x28 0x4a

Control character <ESC> $ B <ESC> ( J
Graphic character か な 漢 字
Ascii characters $+ $J 4A ;z

277— 127 nesting levels of blockslimit
block nesting

278— 63 nesting levels of conditional inclusion

279— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic, structure, union,limit
type complex-
ity or incomplete type in a declaration

281— 63 nesting levels of parenthesized expressions within a full expressionparenthesized
expression
nesting levels

282— 63 significant initial characters in an internal identifier or a macro name (each universal character name orinternal identifier
significant charac-
ters extended source character is considered a single character)

Usage
Very few identifiers approach the C99 translation limit (see Figure 792.7).

283— 31 significant initial characters in an external identifier (each universal character name specifying a shortexternal identifier
significant charac-
ters

Maximum nesting depth

F
un

ct
io

n 
de

fin
iti

on
s

0 5 10 20 32

1

10

100

1,000

10,000

100,000 × × compound-statements××
×

×
×

×
×

×
×

×
×

×
×

×
×

×× ×

• • blocks
•

•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Figure 277.1: Number of functions containing blocks and compound-statements nested to the given maximum nesting level.
Based on the visible form of the .c files.

v 1.1 January 30, 2008



CHANGES 283

Maximum nesting depth

T
ra

ns
la

tio
n 

un
its

2 4 6 8 10

1

10

100

1,000

× × .c files×
×

×

×

× × ×
×

×

• • .h files
• •

•

•

•

• •
•

•

Figure 278.1: Number of translation units containing conditional inclusion directives nested to the given maximum nesting level.
Based on the visible form of the .c and .h files.

Declarator nesting

D
ec

la
ra

tio
ns

0 1 2 3 4 5

1

10

100

1,000

10,000

100,000 ×
×

×

×

×

×

Figure 279.1: Number of full declarators containing a given number of modifiers. Based on the translated form of this book’s
benchmark programs.

Nesting depth

P
ar

en
th

es
es

1 5 10

1

10

100

1,000

10,000

100,000

1,000,000 × × .c files×
×

×

×
×

×
×

×
×

×

×

• • .h files
•

•

•

•

•
• •

•

Figure 281.1: Nesting of all occurrences of parentheses. Based on the visible form of the .c and .h files.

January 30, 2008 v 1.1



CHANGES289

identifier of 0000FFFF or less is considered 6 characters, each universal character name specifying a short
identifier of 00010000 or more is considered 10 characters, and each extended source character is considered
the same number of characters as the corresponding universal character name, if any)14)

285— 4095 external identifiers in one translation unitlimit
external identi-
fiers Usage

External declaration usage information is given elsewhere (see Figure 1810.1).

Table 285.1: Number of identifiers with external linkage (total 487), and total number of identifiers (total 810), implementations
are required to declare in the standard headers.

Header External Identifiers Total Identifiers Header External Identifiers Total Identifiers

<assert.h> 1 2 <signal.h> 2 12
<complex.h> 66 71 <stdarg.h> 3 5
<ctype.h> 15 15 <stdbool.h> 0 4
<errno.h> 1 4 <stddef.h> 0 5
<fenv.h> 11 24 <stdint.h> 0 38
<float.h> 0 31 <stdio.h> 49 65
<inttypes.h> 6 62 <stdlib.h> 36 37
<iso646.h> 0 11 <string.h> 22 24
<limits.h> 0 19 <tgmath.h> 0 60
<locale.h> 2 10 <time.h> 9 15
<math.h> 184 203 <wchar.h> 59 68
<setjmp.h> 2 3 <wctype.h> 18 22

286— 511 identifiers with block scope declared in one blockidentifiers
number in block
scope Usage

The 53,630 function definitions in the translated form of this book’s benchmark programs contained:
definitions of 76 structure, union or enumeration types that included a tag; 6 typedef definitions; and
definitions of 70 enumeration constants.

287— 4095 macro identifiers simultaneously defined in one preprocessing translation unitlimit
macro definitions

288— 127 parameters in one function definitionlimit
parameters in
definition

Identifier length

Id
en

tifi
er

s

1 10 20 30 40 50

1

10

100

1,000

10,000

100,000 × × all identifiers

×

×××
×

×××××××××××××××××××××××××
××

×
××

×
×

×

××
××

×

×
×

×

×

×
×

• • unique identifiers

•

•
•
•
• • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • •
• • •

•
• • •

• •

× × all identifiers that are words

×

×

×
×

×××××
×××

×

• • unique identifiers that are words

• •
•
• • • • • •

•
• •

•

Figure 283.1: Number of identifiers, with external linkage, having a given length. Based on the translated form of this book’s
benchmark programs. Information on the length of all identifiers in the visible source is given elsewhere (see Figure 792.7).

v 1.1 January 30, 2008



CHANGES 289

Objects defined

F
un

ct
io

n 
de

fin
iti

on
s

0 10 20 30 40 50

1

10

100

1,000

10,000

×

××××××××××××××××××××××
××

××××××
×
××××××

×
×
×

×

××

×
××××

×××

Figure 286.1: Number of function definitions containing a given number of definitions of identifiers as objects. Based on the
translated form of this book’s benchmark programs.

#definepreprocessing directives

S
ou

rc
e 

fil
es

0 10 30 50 70 90

1

10

100

1,000
× all #definedirectives in .c files

×

×
×
××××××××××××××××××

××××××××××
×
××

×
×

××
×××

×
××

××

××
×
×

×

×

×

×

×
×××

×

×

×
××××

×
×××

×××

××

××
×
××××

×
×

×
××

××
×

×
×
×
××

• unique macro names in .c files

•

•
•
•
•••••••••••••••••••

•
••

••••••
•
•
•
•

•
••

•
••

••

•
•
•••

•

••
••••••

•

•

•

•••
•

•

•

•
••

•

•

•

•
•

•

•

•

•
•••

•••••

•
•

•
•

••

•

•
•

∆ all #definedirectives in .h files

∆

∆

∆
∆∆∆

∆∆∆∆∆∆∆∆∆∆
∆∆∆∆∆∆∆∆∆∆∆∆∆∆

∆
∆∆∆∆

∆
∆∆∆

∆∆
∆∆∆∆∆∆∆∆∆∆∆∆∆∆

∆
∆
∆
∆

∆

∆∆
∆
∆∆∆

∆
∆∆∆∆∆∆

∆
∆∆

∆

∆

∆∆∆∆∆∆∆

∆
∆∆

∆
∆
∆
∆

∆
∆∆

∆

∆
∆

∆
∆∆

Figure 287.1: Number of source files containing a given number of identifiers defined as macro names in #define preprocessing
directives. Unique macro name counts an identifier once, irrespective of the number of #define directives it appears in. Based on
the visible form of the .c and .h files.

Macro definitions

T
ra

ns
la

tio
n 

un
its

0 100 200 300 400

1

10

100

1,000 × × all macro#define
×

×
×

××

××××

×

×
×

×××

×
×

×
×××

×××

××
××

×
×

×

×

×

×
××

×
××

×××

• • function-macro#define

•

• • •

•
•

• •
• • •

•
• •

•
•

•
• •

•

•
•

•

•
•

• •
• •

•
•

•

Figure 287.2: Number of translation units containing a given number of evaluations of #define preprocessing directives,
excluding the contents of system headers, during translation of this book’s benchmark programs (there were a total of 1,432,735
macros defined, of which 313,620 were function-like macros).

January 30, 2008 v 1.1



CHANGES297

Parameters
%

Fu
nc

tio
n 

de
fin

iti
on

s
0 1 3 5 10

0

10

20

30

40

50
× × .c files

×

×

×

×

×
× × × × × × ×

• • SPECint95

•

•

•
• • • •

• •

∆ ∆ Embedded

∆

∆

∆
∆

∆ ∆ ∆ ∆ ∆

Figure 288.1: Percentage of function definitions appearing in the source of embedded applications (5,597 function definitions),
the SPECint95 benchmark (2,713 function definitions), and the translated form of this book’s benchmark programs (53,719
function definitions) declared to have a given number of parameters. The embedded and SPECint95 figures are from Engblom.[61]

289— 127 arguments in one function callfunction call
number of argu-
ments

290— 127 parameters in one macro definitionlimit
macro parame-
ters

291— 127 arguments in one macro invocationlimit
arguments in
macro invocation

292— 4095 characters in a logical source linelimit
characters on
line

293— 4095 characters in a character string literal or wide string literal (after concatenation)limit
string literal

294— 65535 bytes in an object (in a hosted environment only)limit
minimum object
size

295— 15 nesting levels for #included fileslimit
#include nest-
ing

296— 1023 case labels for a switch statement (excluding those for any nested switch statements)limit
case labels

297— 1023 members in a single structure or unionlimit
members in
struct/union

Arguments

Fu
nc

tio
n 

ca
lls

1

10

100

1,000

10,000

100,000

0 5 10 15 20

×

× × ×
×

×
×

×
× × ×

× ×
× ×

×
× × ×

×
× ×

Figure 289.1: Number of function calls containing a given number of arguments. Based on the translated form of this book’s
benchmark programs.

v 1.1 January 30, 2008



CHANGES 297

Parameters

#d
efi

ne
fu

nc
tio

n-
lik

e
m

ac
ro

s
1

10

100

1,000

10,000

0 5 10 15

× × .c files

×

×
×

×
×

×
×

×

×
× ×

• • .h files

•

•
•

•
•

• •

• •
• •

•

•

•

•

•

•

Figure 290.1: Number of function-like macro definitions having a given number of parameter declarations. Based on the visible
form of the .c and .h files.

Arguments

Fu
nc

tio
n-

m
ac

ro
 e

xp
an

si
on

s

0 5 10 15

1

10

100

1,000

10,000

100,000

1,000,000

×

×

× × × × ×

×
×

×

×

×

Figure 291.1: Number of function-like macro expansions containing a given number of arguments, excluding expansions that
occurred while processing system headers, during translation of this book’s benchmark programs.

Characters

Li
ne

s

1

10

100

1,000

10,000

100,000

1,000,000

0 100 200 300

×
×
×
×
×
××
××

×
×××××××

×
×××××××××××××××××××××××××××××××××××××××××××××××××××××

×
××××××××××××××××××××××××××××××××××××××××

×
×××××××

×
×××××××××××××××××××××××××××

×

××××××××××××××××××××××××
×
××
×××

×
××××
×××××
×××
×××××××××

×

×
××
××
×
×
×
×
××××
×
×
××
×
×
××
×

×

×
×××
×
×××
×

××
×
××
×

×
××××

×

×
×
××
×

×
×××
×
×
×××
×

×
×
××
×
××
××
×
××

×
×
×××
××××
×××
×
×××××

×

××××××
×
×
××××

•

•
•
•

•
•
•

••••
•••••
•••••••

••••••••••••••••••••••••••••••••••••••••••••
••••

•

•
••
••••••

•••••••
•

••••••••
•
••
•

••

•

•••••••••••••

•

••••••••
•

•

••••••••••••••
••••••

•

•
•
•

•
••••

•
•
•
•
•••
••
•
••••
••••
••

••
•

•
•
•••
••••

•

•

•••

•
•
•
•
•••
•
•
••
•
•••••

••
•••
••

••
•
•
•
••

•
•

•

•
•
•
•
• • • •

•
•• • • • •

× .c files
• .h files

Figure 292.1: Number of physical lines containing a given number of characters. Based on the visible form of the .c and .h files.

January 30, 2008 v 1.1



CHANGES297

Characters

St
ri

ng
 li

te
ra

ls
0 50 100 150 200 250

1

10

100

1,000

10,000
×

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××
×××
××××
×
×××
×

×
×
×

×
×
××
×××
×
×
××××

×

×

×

×××
××

×
×
××

××
×
×

×
×
×

×××
××
×
××

×

×

×

×

×
×××

××
××
×

×
×
×

×

××

××
×
×
××
××

×

××××
×
××××

××
×

×

××××××××××
×
×××

×
×

×
×
×

×××××××

×
×
××

Figure 293.1: Number of character string literals containing a given number of characters (i.e., their length). Based on the visible
form of the .c files.

Size (bytes)

O
bj

ec
ts

1 10 100 1,000 10,000 100,000 1,000,000

1

10

100

1,000

10,000

100,000

×× ×××××× ×× ×××××××× ××××× ××× × ××× × × × ×× ×× × ×× ××× ×××× ××× ××× ×× ×××××× ×××××××××××× ×× ×××× ×× ××× ×× ××× × ××× ×× ×× ×××× ××× ××× ×××× ×× × ×××× ×××××× ××× ××× ××× ×× ×××× × ×××× ×× ××× ××× ××××× ×××× ×××× ××××× ×××× ××××× ×× ×× ×××× × ×× ×× × ×× ×× ××××× ×× ×× ×× ××× ××× ×× ××× ××××
×× ×× ×× × ×××× × ×× ××××× ××××× × ×××× ××× × ××× ×× ×××× ×××× ××××× ××××× ×××× ×× ××××××× ××××× × ×××× ×× ×××××× ××× ××××× ×× ×× ×××× ××××××××× ×××××× ××× ××××× ×× × ×× ×× ××× ××× × ×××××× ×× × ×××× ××× × ××××××× ×× ×× ×××× ××× × ×××× ××× ×××× ××××× ×× ×× ××× ×× ×××× ×× ××××× ×× × × ×××× × ×× ××× ×× × ××× ×× ×× ××× ××× × ×× × ××× × ××× × ×××× ×× ×××× ×× × ××× × ××× ×××× ×× ×× ×× ×× ×× ×××× ×× ×× ××× × ××× ×× × ×××× ×× ×× ××× × × ×× ×× × × × ×× ×× ×× × ×× × ××× ×××× ×× ××× × ×× ×× ××× × ××× ×× ×× × ×× ×××× ××× ××× × ××× × ××× × ×× ×× × ×× ×× ×× ×× ×× ×× ×× ×× × ××××× ××

× × ×× ×

×

Figure 294.1: Number of objects requiring the specified amount of storage. Based on the translated form of this book’s benchmark
programs, using integer types whose sizes were: sizeof(short) == 2, sizeof(int) == 4, and sizeof(long) == 4; and
alignment requirements that were a multiple of a types size.

Nesting depth

#i
nc

lu
de

s

1 5 10

1

10

100

1,000

10,000

×

×
×

×
×

× × ×

×
×

×

Figure 295.1: Number of #include preprocessor directives, that contain the quote-delimited form of header name (occurrences
of the < > delimited form were not counted), having a given nesting depth. Based on the translated form of this book’s benchmark
programs.

v 1.1 January 30, 2008



CHANGES 303

case labels

sw
it

ch
st

at
em

en
ts

0 10 20 30 40 50

1

10

100

1,000

10,000

100,000

×

×
×××

××××××××××××××××
××××××××××××

×
×
×
×
××

××
×××

×
××

×
×
××

××××

case labels

St
at

em
en

ts

0 10 20 30 40 50

1

10

100

1,000

10,000

100,000 ×

×
×
×
××××××

×××
×××××××

×
×
×
××

×

×

×

×
××× ×

×
××

×
×××

× ×

×

×

Figure 296.1: Number of switch statements containing the given number of case labels (left) and number of individual
statements labeled by a given number of case labels (right). Based on the visible form of the .c files. Note that counts do not
include occurrences of the default label.

Usage

Measurements of classes,[173] in large Java programs, have found that the number of members follows the
same pattern as that in C (see Figure 297.1).

298 — 1023 enumeration constants in a single enumeration limit
enumeration

constants

299 — 63 levels of nested structure or union definitions in a single struct-declaration-list limit
struct/union

nesting

303 The values given below shall be replaced by constant expressions suitable for use in #if preprocessing integer types
sizesdirectives.

struct/union members

D
efi

ni
tio

ns

1 10 20 30 40 50 75 100

1

10

100

1,000

10,000
× .c files

struct
union

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×××××××××

×

×××
×

×
××

×
××

×
×

××

×
××

××××××
×
×

×
×
××

×× × × × ×

• .h files•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•••

•

•
•
•
•

•

•

•

•

•

•

•

•••
••

••

•

•

•

•
•

•

•
•••

•

•
•
••

•

•

•

•

•

•••
•
•

••
••

•
•
•
• •

••
•

•
• •

•
•
•

•

••
•
•

Figure 297.1: Number of structure and union type definitions containing the given number of members (members in any nested
definitions are not included in the count of members of the outer definition). Based on the visible form of the .c and .h files.

January 30, 2008 v 1.1



CHANGES330

Enumeration constants
E

nu
m

er
at

io
n 

ty
pe

s

1

10

100

50 100 150 200

××
×
×
×××
×××

××

×

××××

×

×
×××
×
××

××

×

×

×
×
×
×
×

×

×

×

×

××
×

××× ×

×

× ×

•

•••
•
•
••
••
••••••

••
•
••
•

•

•
•
••
•

•
•

•••

•

•

•

•

•

••

••

••

•

•••

•

•

••
•
•

•

•
••

•

••
•

•• •••

•
•

•

•• •

•

•

•

•

• • •

•

•••• • • •

× .c files

• .h files

Figure 298.1: Number of enumeration types containing a given number of enumeration constants. Based on the visible form of
the .c and .h files (also see Figure 1439.1).

Nesting depth

st
ru

ct
/u

ni
on

de
fin

iti
on

s

1 2 3 4 5 10

1

10

100

1,000

10,000
× × .c files× ×

×
×

×
×

• • .h files
•

• •

•
•

• • •
•

•
•

Figure 299.1: Number of structure and union type definitions containing the given number nested members that are textually
structure and union type definitions (i.e., definitions using { } not typedef names). Based on the visible form of the .c and .h
files.

Table 303.1: Number of identifiers defined as macros in <limits.h> (see Table 770.3 for information on the number of identifiers
appearing in the source) appearing in the visible form of the .c and .h files.

Name .c file .h file Name .c file .h file Name .c file .h file

LONG_MAX 47 28 CHAR_MAX 15 8 CHAR_BIT 36 3
INT_MAX 106 17 INT_MIN 17 7 SCHAR_MIN 12 2
UINT_MAX 30 14 UCHAR_MAX 16 5 LLONG_MAX 0 1
SHRT_MAX 20 13 CHAR_MIN 9 5 ULLONG_MAX 0 0
SHRT_MIN 19 12 SCHAR_MAX 13 4 LLONG_MIN 0 0
USHRT_MAX 12 11 MB_LEN_MAX 15 4
ULONG_MAX 85 10 LONG_MIN 23 3

330The characteristics of floating types are defined in terms of a model that describes a representation of floating-floating types
characteristics point numbers and values that provide information about an implementation’s floating-point arithmetic.16)

v 1.1 January 30, 2008



CHANGES 334

Table 330.1: Range of representable floating-point values for the Unisys e-@ction Application Development Solutions Compiling
System.

Type Bits Decimal Range

float 36 1.4693680E-39 . . . 1.7014118E+38
double 72 2.7813423E-309 . . . 8.9884657E+307
long double 72 2.7813423E-309 . . . 8.9884657E+307

Table 330.2: Area of triangle, using Heron’s formula, calculated using different rounding directions.

Correct Rounding Down Rounding Up

x 100.01 100.01 100.01
y 99.995 99.995 99.995
z 0.025 0.025 0.025
(x+ (y + z))/2 100.015 100.01 100.02
Area 1.000025 0.0000 1.5813

Usage

Many of the following identifiers were referenced from one program, enquire.c, whose job was to deduce
the characteristics of a host’s floating-point support.

Table 330.3: Number of identifiers defined as macros in <float.h> (see Table 770.3 for information on the number of identifiers
appearing in the source) appearing in the visible form of the .c and .h files.

Name .c file .h file Name .c file .h file Name .c file .h file

DBL_MIN 9 21 FLT_MAX 5 15 FLT_ROUNDS 18 14
DBL_MAX 20 19 FLT_DIG 5 15 FLT_RADIX 20 14
DBL_DIG 41 17 LDBL_MIN_EXP 4 14 FLT_MIN_EXP 4 14
FLT_EPSILON 4 16 LDBL_MIN 4 14 FLT_MIN_10_EXP 4 14
DBL_MIN_EXP 4 16 LDBL_MIN_10_EXP 4 14 FLT_MAX_EXP 4 14
DBL_MIN_10_EXP 4 16 LDBL_MAX_EXP 4 14 FLT_MAX_10_EXP 4 14
DBL_MAX_EXP 27 16 LDBL_MAX 4 14 FLT_MANT_DIG 8 14
DBL_MAX_10_EXP 14 16 LDBL_MAX_10_EXP 4 14 FLT_EVAL_METHOD 0 0
DBL_MANT_DIG 14 16 LDBL_MANT_DIG 4 14 DECIMAL_DIG 0 0
DBL_EPSILON 4 16 LDBL_EPSILON 4 14
FLT_MIN 5 15 LDBL_DIG 4 14

334 e exponent (an integer between a minimum emin and a maximum emax) exponent

Usage

The range of exponent values that can occur within programs may depend on the application domain. For
instance, astronomy programs may contain ranges of very large values and subatomic particle programs
contain ranges of very small values. A study of software for automotive control systems[45] showed (see
Table 334.1) a relatively small range of exponents, close to zero.

January 30, 2008 v 1.1



CHANGES338

Table 334.1: Dynamic distribution of decimal exponents, as a percentage, for operands of various floating point operations.
Adapted from Connors, Yamada, and Hwu[45] (thanks to Connors for supplying the raw data).

Exponent Compare Add Multiply Divide Exponent Compare Add Multiply Divide

0 15.60 11.4 6.7 3.0
-1 2.5 2.5 1.9 0.0 1 10.80 9.3 1.6 1.0
-2 0.7 1.2 0.6 1.0 2 5.20 2.6 1.3 3.0
-3 0.1 0.0 0.7 0.0 3 8.50 4.3 0.7 0.0
-4 0.0 0.1 0.2 1.0 4 0.50 0.0 0.5 0.0
-5 0.0 0.0 0.5 0.0
-6 0.0 0.6 1.4 0.0

338In addition to normalized floating-point numbers (f1 > 0 if x 6= 0), floating types may be able to contain otherfloating types
can represent kinds of floating-point numbers, such as subnormal floating-point numbers (x 6= 0, e = emin, f1 = 0) and

unnormalized floating-point numbers (x 6= 0, e > emin, f1 = 0), and values that are not floating-point numbers,
such as infinities and NaNs.

Exponent value

flo
a

tin
g

-c
o

n
st

a
n

ts

1

10

-100 -50 0 50 100

×

××

× ×

××××

×

××
×
××

×

×

×

×

×

×

×

××

×
×

×××

×

××××

×

×

×
×
× × ×

×
×

×

× × ×
•

•

•• •• •••

•

•

•• •

•

• •

•

•
•

• × .c files

• .h files

Figure 334.1: Number of floating-constants (that included an exponent-part) having a given exponent value. Based on
the visible form of the .c and .h files.

Exponent difference

Fr
eq

ue
nc

y

10
20

50

75

100

0 2 4 6 8 10 12 16 >20

cumulative total

•

•
•

• • • • • • • • • • • • • • • • •
•

Figure 334.2: Difference in the value of the exponents (in powers of 2) of the two operands of floating-point addition and
subtraction operations, obtained by executing the SPECfp92 benchmarks. Adapted from Oberman.[131]

v 1.1 January 30, 2008



CHANGES 338

-2-124 -2-125 -2-126 ±0 2-126 2-125 2-124

Figure 338.1: Range of normalized numbers about zero, including subnormal numbers.

s e f

1 8

msb lsb

23

msb lsb

Figure 338.2: Single-precision IEC 60559 format.

Table 338.1: Format Parameters of IEC 60559 representation. All widths measured in bits. Intel’s extended-precision format is a
conforming IEC 60559 format derived from that standards extended double-precision format.

Parameter Single Single Extended Double Double Extended Intel x86 Extended

Precision, p, (apparent
mantissa width)

24 32 53 64 64

Actual mantissa width 23 31 52 63 64
Mantissa’s MS-Bit hidden bit unspecified hidden bit unspecified explicit bit
Decimal digits of preci-
sion, p/ log2(10)

7.22 9.63 15.95 19.26 19.26

Emax +127 +1023 +1023 +16383 +16383
Emin -126 -1022 -1022 -16382 -16382
Exponent bias +127 unspecified +1023 unspecified +16383
Exponent width 8 11 11 15 15
Sign width 1 1 1 1 1
Format width (9) + (8) +
(4)

32 43 64 79 80

Maximum value,
2Emax+1

3.4028E+38 1.7976E+308 1.7976E+308 1.1897E+4932 1.1897E+4932

Minimum value, 2Emin 1.1754E-38 2.2250E-308 2.2250E-308 3.3621E-4932 3.3621E-4932
Denormalized minimum
value, 2Emin-(4)

1.4012E-45 1.0361E-317 4.9406E-324 3.6451E-4951 1.8225E-4951

Table 338.2: List of some results of operations on infinities and NaNs. Also see: “Expression transformations” in annex F.8.2 of
the C Standard.

Operation =⇒ Result Operation =⇒ Result

x/(+∞) =⇒ +0 x/(+0) =⇒ +∞
x/(−∞) =⇒ −0 x/(−0) =⇒ −∞

(+∞) + x =⇒ +∞ x+NaN =⇒ NaN
(+∞)×x =⇒ +∞ ∞×0 =⇒ NaN
(+∞)/x =⇒ +∞ 0/0 =⇒ NaN

(+∞)− (+∞) =⇒ NaN NaN −NaN =⇒ NaN

January 30, 2008 v 1.1



CHANGES352

Error, ε

Pr
ob

ab
ili

ty

0 2-p 2-p+1

2p-1

loge2

.........................................................................................................................................................................................................

1
loge2 


 1

ε
- 2p-1





Truncated

Error, ε

-0.5×2-p-2-p 0 0.5×2-p 2-p

2p-1

loge2

.........................................................................................................................................................................................................

.........................................................................................................................................................................................................

1
loge2 


 1

2ε
- 2p-1





Nearest

Figure 346.1: Probability of a floating-point operation having a given error (ε) for two kinds of rounding modes (truncated and
to-nearest); p is the number of digits in the significand. Adapted from Tsao.[101]

Table 338.3: Example of gradual underflow. * Whenever division returns an inexact tiny value, the exception bit for underflow is
set to indicate that a low-order bit has been lost.

Variable or
Operation

Value Biased
Exponent

Comment

A0 1.100 1100 1100 1100 1100 1101 × 2-125 2
A1 = A0 / 2 1.100 1100 1100 1100 1100 1101 × 2-126 1
A2 = A1 / 2 0.110 0110 0110 0110 0110 0110 × 2-126 0 Inexact*
A3 = A2 / 2 0.011 0011 0011 0011 0011 0011 × 2-126 0 Exact result
A4 = A3 / 2 0.001 1001 1001 1001 1001 1010 × 2-126 0 Inexact*
.
.
.
A23 = A22 / 2 0.000 0000 0000 0000 0000 0011 × 2-126 0 Exact result
A24 = A23 / 2 0.000 0000 0000 0000 0000 0010 × 2-126 0 Inexact*
A25 = A24 / 2 0.000 0000 0000 0000 0000 0001 × 2-126 0 Exact result
A26 = A25 / 2 0.0 0 Inexact*

346The accuracy of the floating-point operations (+, -, *, /) and of the library functions in <math.h> andfloating-point
operations accu-
racy <complex.h> that return floating-point results is implementation-defined , as is the accuracy of the con-

version between floating-point internal representations and string representations performed by the library
routine in <stdio.h>, <stdlib.h> and <wchar.h>.

Usage
In theory it is possible to measure the accuracy required/expected by an application. However, it is not
possible to do this automatically — it requires detailed manual analysis. Consequently, there are no usage
figures for this sentence (because no such analyses have been carried out by your author for any of the
programs in the measurement set).

352The rounding mode for floating-point addition is characterized by the implementation-defined value ofFLT_ROUNDS

FLT_ROUNDS:18)

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

v 1.1 January 30, 2008



CHANGES 420

Table 352.1: Effect of rounding mode (FLT_ROUNDS taking on values 0, 1, 2, or 3) on the result of a single precision value (given
in the left column).

0 1 2 3

1.00000007 1.0 1.00000012 1.00000012 1.0
1.00000003 1.0 1.0 1.00000012 1.0

-1.00000003 -1.0 -1.0 -1.0 -1.00000012
-1.00000007 -1.0 -1.00000012 -1.0 -1.00000012

368 — number of decimal digits, n, such that any floating-point number in the widest supported floating type with DECIMAL_DIG
macro

pmax radix b digits can be rounded to a floating-point number with n decimal digits and back again without
change to the value,{

pmax log10 b if b is a power of 10
d1 + pmax log10 be otherwise

DECIMAL_DIG 10

389 A summary of the language syntax is given in annex A.

397 The same identifier can denote different entities at different points in the program. identifier
denote differ-

ent entities

407 If the declarator or type specifier that declares the identifier appears outside of any block or list of parameters, file scope

the identifier has file scope, which terminates at the end of the translation unit.

408 If the declarator or type specifier that declares the identifier appears inside a block or within the list of block scope
terminatesparameter declarations in a function definition, the identifier has block scope, which terminates at the end of

the associated block.

413 the entity declared in the outer scope is hidden (and not visible) within the inner scope. outer scope
identifier hidden

Usage
In the translated form of this book’s benchmark programs there were 1,945 identifier definitions (out of
270,394 identifiers defined in block scope) where an identifier declared in an inner scope hid an identifier
declared in an outer block scope.

420 An identifier declared in different scopes or in the same scope more than once can be made to refer to the linkage

same object or function by a process called linkage.21)

representable binary values

representable decimal values

10m+0 10m+1 10m+2 10m+3

| | | | | | | | | | |
2n+0 2n+2 2n+4 2n+6 2n+8 2n+10

Figure 368.1: Representable powers of 10 and powers of 2 on the real line.

January 30, 2008 v 1.1



CHANGES420

identifier

name
space

linkage

scope

name

label

member

tag

ordinary

external

none

internal

function
prototype

file

block

function 

function

typedef

object

storage
duration

type

static
automatic

allocated

Figure 389.1: Attributes a C language identifier can have.

v 1.1 January 30, 2008



CHANGES 420

external

internal

none

Function
Prototype

Block
File

Label

Tag

Structure

Macro

Identifier

object

function

typedef

enum const

L T
T

T

M
M

M

o
o

o

o

o

f

f

f

f

t
t

e
e

e

Figure 397.1: All combinations of linkage, scope, and name space that all possible kinds of identifiers, supported by C, can have.
M refers to the members of a structure or union type. There is a separate name space for macro names and they have no linkage,
but their scope has no formally specified name.

Number using the same spelling

Id
en

tifi
er

 d
ec

la
ra

tio
ns

1 5 10 15 20

1

10

100

1,000

10,000

100,000
• members

parameters
× local objects

•

•

•
•

•
• • •

• •
•

• •
•

•
•

•
•

• •
•

×

×
×

×
× × × × × × × × × × × × × × × × ×

Figure 397.2: Number of declarations of an identifier with the same spelling in the same translation unit. Based on the translated
form of this book’s benchmark programs. Note that members of the same type are likely to be counted more than once (i.e., they
are counted in every translation unit that declares them), while parameters and objects declared within function definitions are
likely to be only counted once.

January 30, 2008 v 1.1



CHANGES420

x

a

x y

p

a

x y

a

Figure 407.1: Some of the ways in which a function can be called— a single call from one other function; called from two or
more functions, which in turn are all called by a single function; and called from two or more functions whose nearest shared
calling function is not immediately above them.

Block nesting

O
bj

ec
t d

efi
ni

tio
ns

1 5 10

1

10

100

1,000

10,000

100,000
×

× ×
×

×
×

× × ×

×
× ×

×
×

Figure 408.1: Number of object declarations appearing at various block nesting levels (level 1 is the outermost block). Based on
the translated form of this book’s benchmark programs.

v 1.1 January 30, 2008



CHANGES 438

Table 420.1: Comparison of identifier linkage models

Model File 1 File 2

common extern int I; int main() { I = 1; second(); } extern int I; void second() { third( I ); }
Relaxed Ref/Def int I; int main() { I = 1; second(); } int I; void second() { third( I ); }
Strict Ref/Def int I; int main() { I = 1; second(); } extern int I; void second() { third( I ); }
Initializer int I = 0; int main() { I = 1; second(); } int I; void second() { third( I ); }

421 There are three kinds of linkage: external, internal, and none. linkage
kinds of

422 In the set of translation units and libraries that constitutes an entire program, each declaration of a particular object
external linkage

denotes same
function

external linkage
denotes same

identifier with external linkage denotes the same object or function.

Usage

A study of 29 Open Source programs by Srivastava, Hicks, Foster and Jenkins[154] found 1,161 identifiers
with external linkage, referenced in more than one translation unit, that were not declared in a header, and
809 instances where a header containing the declaration of a referenced identifier was not #included (i.e.,
the source file contained a textual external declaration of the identifier).

436 If, within a translation unit, the same identifier appears with both internal and external linkage, the behavior is linkage
both inter-

nal/externalundefined.

Usage

The translated form of this book’s benchmark programs contained 27 instances of identifiers declared, within
the same translation unit, with both internal and external linkage.

438 If more than one declaration of a particular identifier is visible at any point in a translation unit, the syntactic name space

context disambiguates uses that refer to different entities.

Declarations

T
ra

ns
la

tio
n 

un
its

250 500 750 1,000

1

10

100

1,000
× function - external linkage

×

×
××

×××××
×××

×
××××××

××

×
×

××

×

×
×
××

×

×
×
×

×

×
××

×

×
×

×
××

××
×
×

××

××
×
×

×

×
×
×××

×
××××××

×
×××

×
×
×

×

×
×

×
×

×
××

×

×

×
×
× ××

××

function - internal linkage

• object - external linkage

•

•

•
•
•

•

•••

•

•
•

•••
•

•
•

•

•
•
•
•

•

•
•••

•
•

•

•
•

•••
•••

•

•

•

•• •

•
•
•

• •

∆ object - internal linkage

∆

∆

∆
∆
∆

∆∆
∆

∆

∆
∆

∆∆

∆

∆

∆
∆

∆

∆

∆

∆

∆

∆∆∆
∆

∆
∆
∆ ∆ ∆

∆
∆∆∆∆

∆
∆∆∆∆∆

∆∆∆

∆
∆

∆

∆

∆∆ ∆ ∆
∆
∆∆∆

Figure 421.1: Number of translation units containing a given number of objects and functions declared with internal and external
linkage (excluding declarations in system headers). Based on the translated form of this book’s benchmark programs.

January 30, 2008 v 1.1



CHANGES449

Table 438.1: Identifiers appearing immediately to the right of the given token as a percentage of all instances of the given token.
An identifier appearing to the left of a : could be a label or a case label. However, C syntax is designed to be parsed from left to
right and the presence, or absence, of a case keyword indicates the entity denoted by an identifier. Based on the visible form of
the .c files.

Token .c file .h file Token .c file .h file

goto identifier 99.9 100.0 struct identifier 99.0 88.4
#define identifier 99.9 100.0 union identifier 65.5 75.8
. identifier 100.0 99.8 enum identifier 86.6 53.6
-> identifier 100.0 95.5 case identifier 71.3 47.2

439Thus, there are separate name spaces for various categories of identifiers, as follows:

Table 439.1: Occurrence of various kinds of declarations of identifiers as a percentage of all identifiers declared in all the given
contexts. Based on the translated form of this book’s benchmark programs.

Declaration Context % Declaration Context %

block scope objects 23.7 file scope objects 4.4
macro definitions 19.3 macro parameters 4.3
function parameters 16.8 enumeration constants 2.1
struct/union members 9.6 typedef names 1.2
function declarations 8.6 tag names 1.0
function definitions 8.1 label names 0.9

443each structure or union has a separate name space for its members (disambiguated by the type of themember
namespace

expression used to access the member via the . or -> operator);

Table 443.1: Number of matches found when comparing between pairs of members contained in different Pascal records that
were defined with the same type name. Adapted from Anquetil and Lethbridge.[7]

Member Types the Same Member Types Different Total

Member names the same 73 (94.8%) 4 ( 5.2%) 77
Member names different 52 (11 %) 421 (89 %) 473

Table 443.2: Number of matches found when comparing between pairs of members contained in different Pascal records (that
were defined with the any type name). Adapted from Anquetil and Lethbridge.[7]

Member Types the Same Member Types Different Total

Member names the same 7,709 (33.7%) 15,174 (66.3%) 22,883
Member names different 158,828 ( 0.2%) 66,652,062 (99.8%) 66,710,890

449There are three storage durations: static, automatic, and allocated.

Usage

In the translated form of this book’s benchmark programs 37% of defined objects had static storage duration
and 63% had automatic storage duration (objects with allocated storage duration were not included in this
count).

v 1.1 January 30, 2008



CHANGES 480

0x00000000

0xFFFFFFFF

static
storage

static
storage

Program
image

Figure 449.1: The location of the stack invariably depends on the effect of a processor’s pop/push instructions (if they exist). The
heap usually goes at the opposite end of available storage. The program image may, or may not, exist in the same address space.

Table 449.1: Total number of objects allocated (in thousands), the total amount of storage they occupy (in thousands of bytes),
their average size (in bytes) and the high water mark of these values (also in thousands). Adapted from Detlefs, Dosser and
Zorn.[54]

Program Total Objects Total Bytes Average Size Maximum Objects Maximum Bytes

sis 63,395 15,797,173 249.2 48.5 1,932.2
perl 1,604 34,089 21.3 2.3 116.4
xfig 25 1,852 72.7 19.8 1,129.3
ghost 924 89,782 97.2 26.5 2,129.0
make 23 539 23.0 10.4 208.1
espresso 1,675 107,062 63.9 4.4 280.1
ptc 103 2,386 23.2 102.7 2,385.8
gawk 1,704 67,559 39.6 1.6 41.0
cfrac 522 8001 15.3 1.5 21.4

455 An object whose identifier is declared with external or internal linkage, or with the storage-class specifier static
storage duration

static has static storage duration.

Usage
In the visible form of the .c files approximately 5% of occurrences of the keyword static occurred in block
scope.

462 If an initialization is specified for the object, it is performed each time the declaration is reached in the execution initialization
performed ev-

ery time decla-
ration reached

of the block;

Usage
Usage information on initializers is given elsewhere. 1652 object

value indeter-
minate

464 For such an object that does have a variable length array type, its lifetime extends from the declaration of the VLA
lifetime

starts/endsobject until execution of the program leaves the scope of the declaration.27)

479 If any other character is stored in a char object, the resulting value is implementation-defined but shall be
within the range of values that can be represented in that type.

Usage
In the visible form of the .c files 2.1% (.h 2.9%) of characters in character constants are not in the basic
execution character set (assuming the Ascii character set representation is used for escape sequences).

January 30, 2008 v 1.1



CHANGES497

pointer to a

f_l

xxx

xxxxxxxxx

i_l

a

G
stack frame

pointer to a

f_l

n+8
pointer to d

i_l

a

d

Figure 464.1: Storage for objects not having VLA type is allocated on block entry, plus storage for a descriptor for each object
having VLA type. By the time G has been called, the declaration for a has been reached and storage allocated for it. After G
returns, the declaration for d is reached and is storage allocated for it. The descriptor for d needs to include a count of the number
of elements in one of the array dimensions. This value is needed for index calculations and is not known at translation time. No
such index calculations need to be made for a.

480There are five standard signed integer types, designated as signed char, short int, int, long int, andstandard signed
integer types long long int.

Usage

It is possible to specify many of the integer types, in C, using more than one sequence of keywords. Usage
information on integer types is given elsewhere (see Table 1378.1).

486For each of the signed integer types, there is a corresponding (but different) unsigned integer type (designatedsigned integer
corresponding
unsigned integer with the keyword unsigned) that uses the same amount of storage (including sign information) and has the

same alignment requirements.

Usage

Usage information on integer type specifiers is given elsewhere (see Table 1378.1, which does not include
uses of integer types specified via typedef names).

Table 486.1: Occurrence of objects having different width integer types (as a percentage of all integer types) for embedded source
and the SPECint95 benchmark (separated by a forward slash, e.g.,embedded/SPECint95). Adapted from Engblom.[61]

8 bits 16 bits 32 bits

unsigned 70.8/1.3 14.0/0.4 2.1/44.9
signed 2.7/0.0 9.4/0.3 1.0/53.1

497There are three real floating types, designated as float, double, and long double.32)floating types
three real

v 1.1 January 30, 2008



CHANGES 521

Table 497.1: Occurrence of floating types in various declaration contexts (as a percentage of all floating types appearing in all of
these contexts). Based on the translated form of this book’s benchmark programs.

Type Block Scope Parameter File Scope typedef Member Total

float 35.2 15.1 8.3 0.7 21.0 80.3
double 8.5 7.9 0.5 0.7 2.2 19.7
long double 0.0 0.0 0.0 0.0 0.0 0.0
Total 43.6 22.9 8.8 1.5 23.2

515 The three types char, signed char, and unsigned char are collectively called the character types. character types

Table 515.1: Occurrence of character types in various declaration contexts (as a percentage of all character types appearing in all
of these contexts). Based on the translated form of this book’s benchmark programs.

Type Block Scope Parameter File Scope typedef Member Total

char 16.4 3.6 1.2 0.1 6.6 28.0
signed char 0.2 0.3 0.0 0.1 0.3 1.0
unsigned char 18.1 10.6 0.4 0.8 41.2 71.1
Total 34.7 14.6 1.5 1.0 48.2

517 An enumeration comprises a set of named integer constant values. enumeration
set of named

constantsUsage
A study by Gravley and Lakhotia[74] looked at ways of automatically deducing which identifiers, defined
as object-like macros denoting an integer constant, could be members of the same enumerated type. The 1931 macro

object-like

heuristics used to group identifiers were based either on visual clues (block of #defines bracketed by
comments or blank lines), or the value of the macro body (consecutive values in increasing or decreasing
numeric sequence; bit sequences were not considered).
The 75 header files analyzed contained 1,225 macro definitions, of which 533 had integer constant bodies.
The heuristics using visual clues managed to find around 55 groups (average size 8.9 members) having more
than one member, the value based heuristic found 60 such groups (average size 6.7 members).

519 The type char, the signed and unsigned integer types, and the enumerated types are collectively called integer integer types

types.

Table 519.1: Occurrence of integer types in various declaration contexts (as a percentage of those all integer types appearing in
all of these contexts). Based on the translated form of this book’s benchmark programs.

Type Block Scope Parameter File Scope typedef Member Total

char 1.8 0.4 0.1 0.0 0.7 3.1
signed char 0.0 0.0 0.0 0.0 0.0 0.1
unsigned char 2.0 1.2 0.0 0.1 4.6 7.9
short 0.7 0.3 0.0 0.0 0.4 1.4
unsigned short 2.3 0.8 0.1 0.1 3.2 6.5
int 28.4 10.6 4.2 0.1 6.4 49.7
unsigned int 5.6 3.6 0.3 0.1 4.2 13.8
long 3.0 1.2 0.1 0.1 0.8 5.1
unsigned long 4.8 1.9 0.2 0.1 2.1 9.1
enum 0.9 0.9 0.4 0.4 0.8 3.3
Total 49.6 20.8 5.4 0.9 23.2

520 The integer and real floating types are collectively called real types. real types

January 30, 2008 v 1.1



CHANGES525

integer types

char
signed

integer types
unsigned

integer types
enumerated

types

extended
signed integer types

standard
signed integer types

standard
unsigned integer types

extended
unsigned integer types

_Bool
signed
char

unsigned
char

signed
short

unsigned
short

signed
int

unsigned
int

signed
long

unsigned
long

signed
long long

unsigned
long long

implementation
defined

corresponding
standard unsigned integer types

implementation
defined

Figure 519.1: The integer types.

real types

integer types real floating types

float double long double

Figure 520.1: The real types.

521Integer and floating types are collectively called arithmetic types.arithmetic type

523The void type comprises an empty set of values;void
is incomplete
type

Usage

Information on keyword usage is given elsewhere (see Table 539.1, Table 758.1, Table 788.1, Table 1003.1,
Table 1005.1, and Table 1134.1).

525Any number of derived types can be constructed from the object, function, and incomplete types, as follows:derived type

arithmetic types

integer types floating types

real floating types complex types

float _Complex double _Complex long double _Complex

Figure 521.1: The arithmetic types.

v 1.1 January 30, 2008



CHANGES 533

Table 525.1: Occurrence of derived types in various declaration contexts (as a percentage of all derived types appearing in all
of these contexts, e.g., int **ap[2] is counted as two pointer types and one array type). Based on the translated form of this
book’s benchmark programs.

Type Block Scope Parameter File Scope typedef Member Total

* 30.4 37.6 3.1 0.8 5.6 77.5
array 3.3 0.0 4.4 0.0 3.0 10.8
struct 3.7 0.1 2.4 2.3 2.6 11.2
union 0.2 0.0 0.0 0.1 0.2 0.5
Total 37.7 37.8 10.0 3.3 11.3

527 Array types are characterized by their element type and by the number of elements in the array.

Table 527.1: Occurrence of arrays declared to have the given element type (as a percentage of all objects declared to have an
array type). Based on the translated form of this book’s benchmark programs.

Element Type % Element Type %

char 17.2 struct * 3.7
struct 16.6 unsigned int 2.7
float 14.6 enum 2.5
other-types 10.4 unsigned short 2.0
int 8.5 float [] 1.9
const char 8.0 const char * const 1.3
char * 5.1 short 1.1
unsigned char 4.4

530 — A structure type describes a sequentially allocated nonempty set of member objects (and, in certain structure type
sequentially al-
located objectscircumstances, an incomplete array), each of which has an optionally specified name and possibly distinct

type.

Usage

Usage information on the number of members in structure and union types and their types is given elsewhere. 297 limit
members in
struct/union

1403 struct
member
type

533 A function type is characterized by its return type and the number and types of its parameters.

Number of elements

A
rr

ay
 d

ec
la

ra
tio

ns

1 2 4 10 64 256 1,024 8,192 65,536

1

10

100

1,000
×

×
× ×

×
×

×

×

×

×

×

×

××
×

×

×
×

×

×

××

×

×
×

×
×××

×

×

×

×

××
×
×

×

×

×

××
×××
×
×

×

×

×

×

×

×
×
×

×

×

×

×

×

××
×

×

×
×

×

×
×
××
×
××××

×

×

×

×

××

×

×

×

×

×
×
×××
×
×
×
×
×
×

×
×
×

×

×

×

×

×

×

××
×

×

×
×
××
×
×

×

×

×

×

×
××××××
××
×
×

×

×

×
××

×

×
×
×
×
×

×

×

×

×

×

×

××

×

×
×

×

××

×

××

××

×

×

×
××
×
×

×

×
×××
×
×

×

×

×

×

×
×
×
××

×

×

×××

×
×
×

×

×

×

×××

×

×
×××××

×

××
×

×

×

×
×
××××

×

×

××××××

×

××

×

×
×

×

×
×
×

×

×

×

×
×
×

×

××
×××
×
×××

×
××
×
×

×××
×
×

×

××
××
××××××××

×

×
×
×

×

×

×
×

××

×

××××

××

×

××××

×

×

××
×

××

×

××

×

×
×

×

×

×

×× ×

××

×

×
×
××

Figure 527.1: Number of arrays defined to have a given number of elements. Based on the translated form of this book’s
benchmark programs.

January 30, 2008 v 1.1



CHANGES555

a b c

Figure 530.1: Three examples of possible member clusterings. In (a) there are two independent groupings, (b) shows a hierarchy
of groupings, while in (c) it is not possible to define two C structure types that share a subset of common member (some other
languages do support this functionality). The member c, for instance, might be implemented as a pointer to the value, or it may
simply be duplicated in two structure types.

Usage

Usage information on function return types is given elsewhere (see Table 1005.1) as is information on
parameters (see Table 1831.1).

539— A pointer type may be derived from a function type, an object type, or an incomplete type, called thepointer type
referenced type referenced type.

Table 539.1: Occurrence of objects declared using a given pointer type (as a percentage of all objects declared to have a pointer
type). Based on the translated form of this book’s benchmark programs.

Pointed-to Type % Pointed-to Type %

struct 66.5 struct * 1.8
char 8.0 int 1.8
union 6.0 const char 1.3
other-types 5.5 char * 1.2
void 3.3 str | str
unsigned char 2.6 _double | _double
unsigned int 2.2 _double | _double

554Any type so far mentioned is an unqualified type.unqualified type

Table 554.1: Occurrence of qualified types as a percentage of all (i.e., qualified and unqualified) occurrences of that kind of type
(e.g., * denotes any pointer type, struct any structure type, and array of an array of some type). Based on the translated form of
this book’s benchmark programs.

Type Combination % Type Combination %

array of const 26.7 const * 0.4
const integer-type 4.8 const union 0.3
const real-type 2.7 volatile struct 0.1
* const 2.6 volatile integer-type 0.1
const struct 2.4 * volatile 0.1

555Each unqualified type has several qualified versions of its type,38) corresponding to the combinations of one,qualified type
versions of two, or all three of the const, volatile, and restrict qualifiers.

v 1.1 January 30, 2008



CHANGES 570

Table 555.1: Occurrence of type qualifiers on the outermost type of declarations occurring in various contexts (as a percentage of
all type qualifiers on the outermost type in these declarations). Based on the translated form of this book’s benchmark programs.

Type Qualifier Local Parameter File Scope typedef Member Total

const 18.5 4.3 50.8 0.0 1.2 74.8
volatile 1.6 0.1 3.0 0.1 20.4 25.2
volatile const 0.0 0.0 0.0 0.0 0.0 0.0
Total 20.1 4.4 53.8 0.1 21.6

559 Similarly, pointers to qualified or unqualified versions of compatible types shall have the same representation pointer
to quali-

fied/unqualified
types

and alignment requirements.

570 Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number, order, object
contiguous se-

quence of bytesand encoding of which are either explicitly specified or implementation-defined.

0x000

0x0FF

0x000

0x0FF
Bank 0

Access RAM 0x07F
GPR

0x1FF

0x000

0x0FF
Bank 1 GPR

0x2FF

0x000

0x0FF
Bank 2 Free

Bank 14
to

Bank 3

0xFFF

0xEFF0x000

0x0FF
Bank 15

SFR
0xF7FFree

Figure 559.1: Data storage organization for the PIC18CXX2 devices[121] The 4,096 bytes of storage can be treated as a linear
array or as 16 banks of 256 bytes (different instructions and performance penalties are involved). Some storage locations hold
Special Function Registers (SFR) or General Purpose Registers (GPR). Free denotes storage that does not have a preassigned
usage and is available for general program use.

0xa00

0x0b1

0xc02

0x0d3

0xe04

0x0f5 0xa0 0

0x0b 1

0xc0 2

0x0d 3

0xe0 4

0x0f 50xa0

msb

0x0b

lsb

0xa0

lsb

0x0b

msb

Figure 570.1: Developers who use little-endian often represent increasing storage locations going down the page. Developers
who use big-endian often represent increasing storage locations going up the page. The value returned by an access to storage
location 0, using a pointer type that causes 16 bits to be read, will depend on the endianness of the processor.

January 30, 2008 v 1.1



CHANGES653

Table 570.1: Byte order (indicated by the value of the digits) used by various processors for some integer and floating types, in
different processor address spaces (all address spaces if none is specified).

Vendor 16-bit integer 32-bit integer 64-bit integer 32-bit float 64-bit float

AT&T 3B2 4321 (data space)/
1234 (program space)

DEC PDP–11 12 3412 3412 (F format) 78563412 (D format)
DEC VAX 12 1234 12345678 3412 (F format) 78563412 (D format)
NSC32016 1234 (data space)/

4321 (program space)

594If there are N value bits, each bit shall represent a different power of 2 between 1 and 2N-1, so that objects of
that type shall be capable of representing values from 0 to 2N-1 using a pure binary representation;

Table 594.1: Pattern of bits used to represent decimal numbers using various coding schemes.

Decimal Binary Gray code 111 biased 2–out-of–5

0 0000 0000 0111 00011
1 0001 0001 1000 00101
2 0010 0011 1001 00110
3 0011 0010 1010 01001
4 0100 0110 1011 01010
5 0101 0111 1100 01100
6 0110 0101 1101 10001
7 0111 0100 1110 10010
8 1000 1100 1111 10100
9 1001 1101 11000
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

610If the sign bit is one, the value shall be modified in one of the following ways:sign bit
representation

653Several operators convert operand values from one type to another automatically.operand
convert auto-
matically

x
m
s

e
s

exponent significand

1

47

1 1 6

44

39

38 0

Figure 570.2: The Unisys A Series[171] uses the same representation for integer and floating-point types. For integer values bit 47
is unused, bit 46 represents the sign of the significand, bits 45 through 39 are zero, and bits 38 through 0 denote the value (a sign
and magnitude representation). For floating values bit 47 represents the sign of the exponent and bits 46 through 39 represent the
exponent (the representation for double-precision uses an additional word with bits 47 through 39 representing higher order-bits
of the exponent and bits 38 through 0 representing the fractional portion of the significand).

v 1.1 January 30, 2008



CHANGES 711

0

0000

0

0

0

1

0001

1
1

1

2
0010

2
2

2

3
0011

3
3

3

4 0100 4 4 4

5
0101

5
5

5
6

0110
6

6
6

7

0111

7
7

7

8

1000

-8

-0

-7

9

1001

-7
-1

-6

10
1010

-6
-2

-5

11
1011

-5
-3

-4

121100-4-4-3

13
1101

-3
-5

-2
14

1110
-2

-6
-1

15

1111

-1
-7

-0

Figure 610.1: Decimal values obtained by interpreting a sequence of bits in various ways. From the inside out: unsigned, binary,
two’s complement, sign and magnitude, and one’s complement.

Usage
Usage information on the cast operator is given elsewhere (see Table 1134.1).

Table 653.1: Occurrence of implicit conversions (as a percentage of all implicit conversions; an _ prefix indicates a literal
operand). Based on the translated form of this book’s benchmark programs.

Converted to Converted from % Converted to Converted from %

( unsigned char ) _int 33.0 ( int ) unsigned short 1.9
( unsigned short ) _int 17.7 ( unsigned long ) _int 1.8
( other-types ) other-types 11.3 ( unsigned int ) int 1.7
( short ) _int 7.6 ( short ) int 1.7
( unsigned int ) _int 5.1 ( enum ) _int 1.3
( ptr-to ) ptr-to 4.7 ( unsigned long ) int 1.2
( char ) _int 3.6 ( int ) char 1.2
( ptr-to ) _ptr-to 2.9 ( int ) enum 1.0
( int ) unsigned char 2.3

675 These are called the integer promotions.48) integer pro-
motions

Table 675.1: Occurrence of integer promotions (as a percentage of all operands appearing in all expressions). Based on the
translated form of this book’s benchmark programs.

Original Type % Original Type %

unsigned char 2.3 char 1.2
unsigned short 1.9 short 0.5

687 If the value of the integral part cannot be represented by the integer type, the behavior is undefined.50)

710 Otherwise, the integer promotions are performed on both operands. arithmetic
conversions
integer pro-

motionsUsage
Usage information on integer promotions is given elsewhere (see Table 675.1).

January 30, 2008 v 1.1



CHANGES758

Figure 687.1: Illustration of the effect of integer addition wrapping rather than saturating. A value has been added to all of the
pixels in the left image to increase the brightness, creating the image on the right. With permission from Jordán and Lotufo.[89]

711Then the following rules are applied to the promoted operands:arithmetic
conversions
integer types Usage

Usage information on implicit conversions is given elsewhere (see Table 653.1).

725Except when it is the operand of the sizeof operator, the unary & operator, the ++ operator, the -- operator,lvalue
converted to
value or the left operand of the . operator or an assignment operator, an lvalue that does not have array type is

converted to the value stored in the designated object (and is no longer an lvalue).

Usage
Usage information on the number of translation time references, in the source code, is given elsewhere (see
Figure 1821.5, Figure 1821.6).

754Any pointer type may be converted to an integer type.pointer
permission to
convert to integer Usage

Usage information on pointer conversions is given elsewhere (see Table 758.1 and Figure 1134.1).

758A pointer to an object or incomplete type may be converted to a pointer to a different object or incomplete type.pointer
converted to
pointer to different
object or type

Reads

W
ri

te
s

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

• 8 bits
∆ 16 bits
× 32 bits

> 32 bits

××××××××××××××××××××××××××
×××
×

×
××
×
×××× ××

×××
××××
××
××× ×××××××

×
×××
×××××

×

×××××××××××

×

×
××
×××

×

××××××

×××
××
×
×××
×××

×××× ×

××

×××××
×
×

××

×

×
×
×
××××
×

××

×××

×××

××

×

×

×

×
×××

×

×

×××××

××
×

×
×
××
×××××××
××

××

×

×

×

××

×

×
×
××

×××
××
×
×××

×
×
×

×

×

×

×
××

××

××××
×

×

×
××
××

×

××

×××
×

×
×

××
×

××

×
×××
××

×

×
××
×

×
××

×
××
××

×

∆
×
×
××
×
××
×
×
××××
×
×××××

××
×××

×
×

×
×
×
×

×
×

×

×
×

×
××
×
×

××
×××
×××××
×××
××

×

×
××

××
×××
×

×

×

×

××
×

×

××
××××
××

××

×
×
××
×
×
×
××

×
××

×

×

×××××××××××
××
×××××
××
××

××
×
×
×

×
×

××
×××××
×××××

×

×

×

×

×
×
×
××
×××××××

×

×××××××
××
×
×

××

×

×

××

×××
×

×

××
××××

×

×××

×××

×
××

×
×

×
××

×

×

×
×××××

•×

×
×
×

×××
××
××

××

×

××××
×××

×

×

××

×

×

×
×

×

×

×

×
×××××

×

×
××××××

×

××××

×

××
××

××

××

×

××××××××××
×
×

×

××××
× ×××××××××××

×

×
×
××××××

×

×

×

×
×

×

×

×
×
×

×××

×

× ×

×××××××××××××

×

×××××××××××××××××××

××

×
××
×
×
××
×
××
×
×××
×
×
×××× ××

××

×××
×××××
××
×
×
××
×
××
×
××
×
××× ×

×××
××××××××××××××
×
×

××
×
×××

×

×
×××
××××

××
××

××
××××

××
××
××
××
×
×××
×
××××
×

××

×

×

××××
×
×
××××
×

×××
××
×
×
×

×

×
××

××××

×
××

×

×××

×
××
×××
×
×
×

×

×
×

×

×××

××
×
××

×
×
×××××××
××
×
×
×××
×××

×××××××××××
××

×

×××

×

××
×××××

××
×
×××

×

××

×
××
××

×

××
×××
×
×
×

×

×

×

×××
××
×

××
×
×
×
×

××××
××

×
×
××
×

×
×

×

×

×

×

×

××

×
××
×
×

×
×

×
×
××××××××××××××××××××××× ×

××

×
××
×
××
×

××

×
×

×
×
×××
×
××
×

×

××

×

×××
×
×

×

×

×
×

×

×

×××
×
××××
×××
×
×
××××

×

×

×
×
×

×
××

×

•
×
××××××

×

×

×

×

×

×××

×
×

×

×

×××

× ××××××

×

×

×

××××××

×

×× ×
×

×

×
×

×××××××××××××××××× ××
×

•∆×××××××××××××××××× ×××××××
×××
×× ∆×××××××

×
×
×
××× ×××

××

× ×

××××××

××

× ××

××

× ∆

××

×

×

×

×××
×

×

×

×××
×××

×
××
×××

××

×

×

∆

×× × ××

× ×
×
×××

×

×××××
××

×

××

×

×

×

×× ×××

×
×

××

×××× ×××

∆

×

××

×

×

×

×××××

××

×

× ∆× ×
×××××××

•

×

×

××

×

×

×××××

∆××××
×

××

×

×

×××

×

××
× ×

×××

×

××

×
×

×
×

××××××××××××××× ××××
×××
× ×××

×
× ××

×

×

××
∆

××

•
× ×

×××

×

×

×

×

×
××

×

∆

×××
×

×

×

∆ •∆× ×× ××

×

×

•

×

× ∆

×

∆
•

×××

×

× ×

××

•

×

× ××

×

×

×

××

×

××

×

×

×

× ×
×
××

××× ××
× ×

×

× ×
×

×

×
×

∆ •
×

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆

×

∆∆ •
×

∆× ∆× ∆∆××××××××

××××

∆∆××
∆
∆

××
×××× ××××

∆
×

∆∆∆∆

××
×

× ∆∆× ××

×

× ××

××

×

×

×
×

∆
•

•
×

∆∆∆∆∆∆∆∆∆∆∆∆

×

∆∆ •
×

∆× ∆× ∆∆∆××××

××

×

×××

∆∆ ∆
×××

×
×××××

∆
×

∆∆∆∆

××
× ×

× ∆∆× ××

×

× ××

××

×
×
×
×××××××
× ×××

××
×
××××
××
×

×

×××
×

××
××
××××××

××
××

×
××× ×

×
∆×××××

×

×

×

×

×

∆∆∆∆∆∆∆∆∆∆∆

××× ××

∆
∆∆∆

∆
∆∆∆∆

×

×

××××××××××××××××× ∆∆
∆∆

×

∆

××

∆×
×××××××××××××

×

∆
×××××××

∆∆
×

×

∆
××

∆
×××××××××××××
×

∆

×

∆

××× ∆
∆∆

∆
∆

∆
×
×
×
××

×××

∆
××

×

××

∆∆∆

∆

∆

∆
×

∆

×

×

××××××
×

∆

××
∆
∆
∆

××

∆
∆

××

×

××

∆
× ××××××××××××

×

×××
××
×

∆∆

×
×

∆∆

×××

∆

×
×

×
×

×

×

×
×
×
××××××
× ×××

××
××
×××
××
× ×

×
×
××
× ××××××

××××
××

×
×× ×

×
×× ×

×

×

××××××

×

×

×

∆∆∆∆∆∆∆∆

×× ×

∆∆∆∆
∆∆

×

××

××××××

××

∆×××××

× ×

××
∆∆××

∆
××××××××××××
×

∆

×××
∆∆

∆

∆
×
×
×
× ××

∆∆
××××××

∆

×
× ×

∆×××××× ×
×
×

∆∆

×

∆

×

×
×
×

•×××××××××
×××××××××
×××××××

×
×

×
×
×××××××

×××××××××
×

××
××××

×
×××
××
××
×
×

××
×
××

×

×××
××
×××

×

×

×

×

× ×
×

××

×
×

××

×

××

×
×
×

×

××××

×

××

×

×××
×
××

××

××

×××
×

×

××

××

×
××

×
××

××
×

×

×××
××
××××
××××

××××××××

××

×××××××××

×

×

×

×

××

×
××
××

×

××

×××

××

×

××××××
××××××××××××××××
××××
×

××××

××

×

×
×××
××××
×
×××××××××××

××××
×××××××××
××××
×
×
×××××

×

×

×

××××××××××
×

×

××
×××

×

××××××
××
×
×
××
××××

×

××
×××
××××××
×

×

×
×
×

×
××

×××××

×

××××

×

×

××

×

×××××

××

×

××××××××××××
×

×

×
×
×

××

×

×
××

×

×××××

×
××

×

××××××

×

××

×

×
×××

×

××
×
××

××

×
×
×××××××

×
×
×

×
××

×

×

××

×

××

×

××
×

×

×

×

××

××

×

×

×
×

×

×

×

××

×

××××

×

××
×
×
×

×

×

××××
×××××××××××××××××××××

××

•

×××××× ×

×

×

×

××××
×××××××××××××

×
×

×

×

×

×

××
×××
××
×××××××××××
××××

××

×××

×

×
×

×

×
×
××××
×

×

××
×××

×

×

××

×

×

×

× ×××

×

×××××
×

×

×

×

×× × ×

××
×

×
×
××

××
××

×

× ××
×× ×××

×××××××××
×
×××

×
××
××××××

×
××××
× ×

××
×
×
××
×

×

×
××××
×

×
×
××

×××
××

××

×

×

××××
×

× ×

×× ×

×

×
×

×

×

××××××
×

×

××

×

×
××××××××××××××××××××××××

×
×

×

××

×

×

×

××
××

×

×
××××××

×

×
×××
×
×
××
××
××××××

×
×

×

××
××××

×××××
××
××

×

××

×××

×

×

×××
××××××

××

×

×

××

×

×××××××

××

×

×

×

××

×××××

×

×

×

×
××

×

××
×
×

×
×

×

×××
×
×

×××
×
××××

×

×

×

× ×
×

×

×

×

×

××××××× ×× × × ×

×

××× × ×

× ×
× ×××

× ×
××

× ×

××× × ×

×
×
×

××××
×

××
×

Figure 725.1: Execution-time counts of the number of reads and writes of the same object (declared in block or file scope, i.e.,
not allocated storage) for a subset of the MediaBench benchmarks; items above the diagonal indicate more writes than reads.
Data kindly supplied by Caspi, based on his research.[31]

v 1.1 January 30, 2008



CHANGES 770

Table 758.1: Occurrence of implicit conversions that involve pointer types (as a percentage of all implicit conversions that involve
pointer types). Based on the translated form of this book’s benchmark programs.

To Type From Type % To Type From Type %

( struct * ) int 44.0 ( void * ) int 4.2
( function * ) int 18.4 ( unsigned char * ) int 3.4
( char * ) int 7.9 ( ptr-to * ) int 2.0
( const char * ) int 6.9 ( int * ) int 1.9
( union * ) int 5.5 ( long * ) int 1.1
( other-types * ) other-types * 4.7

770
token

syntax
preprocess-

ing token
syntaxtoken:

keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

Table 770.1: Mean percentage differences, compared to normal, in reading times (silent or aloud); the values in parenthesis are
the range of differences. Adapted from Epelboim.[62]

Filler type Surround Fill-1 Fill-2 Unspaced

Shaded boxes (aloud) 4 ( 1–12) — 3 ( -2–9) 44 (25–60)
Digits (aloud) 26 (15–40) 26 (10–42) — 42 (19–64)
Digits (silent) 40 (32–55) 41 (32–58) — 52 (45–63)
Greek letters (aloud) 33 (20–47) 36 (23–45) 46 (33–57) 44 (32–53)
Latin letters (aloud) 55 (44–70) — 74 (58–84) 43 (13–58)
Latin letters (silent) 66 (51–75) 75 (68–81) — 45 (33–60)

Table 770.2: Number of expressions containing two binary operators (excluding any assignment operator, comma operator,
function call operator, array access or member selection operators) having the specified spacing (i.e., no spacing, no-space, or
one or more whitespace characters (excluding newline), space) between a binary operator and both of its operands. High-Low
are expressions where the first operator of the pair has the higher precedence, Same are expressions where the both operators
of the pair have the same precedence, Low-High are expressions where the first operator of the pair has the lower precedence.
For instance, x + y*z is space no-space because there are one or more space characters either side of the addition operator and
no-space either side of the multiplication operator, the precedence order is Low-High. Based on the visible form of the .c files.

Total High-Low Same Low-High

no-space 34,866 2,923 29,579 2,364
space no-space 4,132 90 393 3,649
space space 31,375 11,480 11,162 8,733
no-space space 2,659 2,136 405 118
total 73,032 16,629 41,539 14,864

January 30, 2008 v 1.1 201



CHANGES770

orientation curved/straight shape

shape size mixed

color enclosure number

addition juncture parallelism

Figure 770.1: Examples of features that may be preattentively processed (parallel lines and the junction of two lines are the odd
ones out). Adapted from Ware.[172]

Figure 770.2: Proximity— the horizontal distance between the dots in the upper left image is less than the vertical distance,
causing them to be perceptually grouped into lines (the relative distances are reversed in the upper right image).

202 v 1.1 January 30, 2008



CHANGES 770

color

size

orientation

differ by 180

differ by 45

Figure 770.3: Similarity— a variety of dimensions along which visual items can differ sufficiently to cause them to be perceived
as being distinct; rotating two line segments by 180° does not create as big a perceived difference as rotating them by 45°.

Figure 770.4: Continuity— upper image is perceived as two curved lines; the lower-left image is perceived as a curved line
overlapping a rectangle rather than an angular line overlapping a rectangle having a piece missing (lower-right image).

Figure 770.5: Closure— when the two perceived lines in the upper image of Figure 770.4 are joined at their end, the perception
changes to one of two cone-shaped objects.

January 30, 2008 v 1.1 203



CHANGES770

Figure 770.6: Symmetry and parallelism— where the direction taken by one line follows the same pattern of behavior as another
line.

no proximity

proximity only

color only

shape only

near to different shape

near to same shape

conflict

near to same color

Figure 770.7: Conflict between proximity, color, and shape. Based on Quinlan.[140]

Image

Edge
Detection

Edge
Map

Region
Formation

Region
Map

Figure
Ground

Entry
Level
Units

Grouping

Superordinate
Units

Parsing

Subordinate
Units

Figure 770.8: A flowchart of Palmer and Rock’s[133] theory of perceptual organization.

204 v 1.1 January 30, 2008



CHANGES 770

Pages read

R
ea

di
ng

 ti
m

e 
(m

in
s)

1

2

4

8

16

0 2 4 8 16 32 64 128 256

inverted text

inverted text (year later)

normal text

normal text (year later)

Figure 770.9: The time taken for subjects to read a page of text in a particular orientation, as they read more pages. Results are
for the same six subjects in two tests more than a year apart. Based on Kolers.[100]

January 30, 2008 v 1.1 205



CHANGES770

Number of items in display

Se
ar

ch
 ti

m
e 

(m
s)

200

400

600

800

1000

1200

1 6 12

•

•

•

• • •

Number of items in display

1200

1 6 12 1 6 12 1 6 12

gap size 1/2 gap size 1/4 gap size 1/8

• •
•

• •
• •

•

•

• •
• •

•

•

• •
•

• •
closed circle (negative)

closed circle (positive)

• •open circle (negative)

closed circle (positive)

Figure 770.10: Examples of unique items among visually similar items. Those at the top include an item that has a distinguishing
feature (a vertical line or a gap); those underneath them include an item that is missing this distinguishing feature. Graphs
represent time taken to locate unique items (positive if it is present, negative when it is not present) when placed among different
numbers of visibly similar distractors. Based on displays used in the study by Treisman and Sother.[166]

206 v 1.1 January 30, 2008



CHANGES 770

Roadside joggers endure sweat, pain and angry drivers in the name of

1
286

2
221

3
246

4
277

5
256

6
233

7
216

8
188

fitness. A healthy body may seem reward enough for most people. However,

9
301

10
177

12
196

13
175

11
244

14
302

15
112

16
177

17
266

18
188

19
199

for all those who question the payoff, some recent research on physical

21 20 22 23 24 25 26 27

activity and creativity has provided some surprisingly good news. Regular

29
201

28
66

30
201

31
188

32
203

33
220

34
217

35
288

36
212

37
75

Figure 770.11: A passage of text with eye fixation position (dot under word), fixation sequence number, and fixation duration (in
milliseconds) included. Adapted from Reichle, Pollatsek, Fisher, and Rayner[145] (timings on the third line are missing in the
original).

_ * * * _ a b o v * _ * _

Visual Data

Lexical Knowledge

word %
a 3.7
able 0.037
about 0.37
above 0.068
. .. .
the 11.0
. .. .

eye movement
accuracy

Motor Knowledge

Minimise

Entropy

saccade distance

Figure 770.12: Mr. Chips schematic. The shaded region in the visual data is the parafoveal; in this region individual letters
(indicated by stars) can only be distinguished from spaces (indicated by underscores). Based on Legge et al.[109]

January 30, 2008 v 1.1 207



CHANGES770

ln(word frequency)

Ti
m

e 
(m

s)

0

100

200

300

400

0 2 4 6 8 10

parafoveal

preview

familiarity check

completion of

lexical access

saccadic latency
.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.

..

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 770.13: How preview benefit is affected by word frequency. The bottom line denotes the time needed to complete the
familiarity check, the middle line the completion of lexical access, and the top line when the execution of the eye movement
triggered by the familiarity check occurs. Based on Reichle, Pollatsek, Fisher, and Rayner.[145]

cognition

vision

eye-prep

eye-exec

Figure 770.14: Example case of EMMA’s control flow. Adapted from Salvucci.[147]

Fixation location relative to word center

A
m

bi
gu

ity

1.2

1.6

2

2.4

2.8

-4 -3 -2 -1 0 1 2 3 4

11 letters

•

•
• •

•

•

•10 letters•

•
• •

•

•9 letters
•

• •
•

•
8 letters•

• •

•

•

7 letters•

•

•

•

6 letters
•

•

•

5 letters
• •

Figure 770.15: The ambiguity of patterns defined by the first and last letter and an interior letter pair, as a function of the position
of the first letter of the pair. Plots are for different word lengths using the 65,000 words from CLAWS[107] (as used by the aspell
tool). The fixation position is taken to be midway between the interior letter pair.

208 v 1.1 January 30, 2008



CHANGES 770

Fixation location relative to word center

A
m

bi
gu

ity

-4 -3 -2 -1 0 1 2 3 4

1

1.5

2

2.5

3

11 letters
•

• • • • •
•

•
10 letters•

• • • •
•

•

•

9 letters

•
• • •

•
•

•

8 letters• • •
•

•

•

7 letters
•

• •
•

•

6 letters
• •

•

•

5 letters• •

•

Figure 770.16: The ambiguity of source code identifiers, which can include digits as well as alphabetic characters. Plots are for
different identifier lengths. A total of 344,000 identifiers from the visible form of the .c files were used.

January 30, 2008 v 1.1 209



CHANGES788

Usage
Table 770.3 shows the relative frequency of the different kinds of tokens in a source file (actual token
count information is given elsewhere). Adding the percentages for Preceded by Space and First on Line

transla-
tion phase

3

124

(or followed by space and last on line) does not yield 100% because of other characters occurring in those
positions. Some tokens occur frequently, but contribute a small percentage of the characters in the visible
source (e.g., punctuators). Identifier tokens contribute more than 40% of the characters in the .c files, but
only represent 28.5% of the tokens in those files.

Table 770.3: Occurrence of kinds of tokens in the visible form of the .c and .h files as a percentage of all tokens (value in
parenthesis is the percentage of all non-white-space characters contained in those tokens), percentage occurrence (for .c files
only) of token kind where it was preceded/followed by a space character, or starts/finishes a visible line. While comments are not
tokens they are the only other construct that can contain non-white-space characters. While the start of a preprocessing directive
contains two tokens, these are generally treated by developers as a single entity.

Token % of Tokens
in .c files

% of Tokens
in .h files

% Preceded
by Space

% Followed
by Space

% First Token
on Line

% Last Token
on Line

punctuator 53.5 ( 11.4) 48.1 ( 7.5) 27.5 29.7 3.7 25.3
identifier 29.8 ( 43.4) 20.8 ( 30.6) 54.9 27.6 1.4 1.2
constant 6.9 ( 3.8) 21.6 ( 15.3) 70.3 4.4 0.1 1.6
keyword 6.9 ( 5.8) 5.4 ( 4.2) 79.9 82.5 10.3 3.6
comment 1.9 ( 31.0) 3.4 ( 40.3) 53.4 2.2 41.2 97.4
string-literal 1.0 ( 4.6) 0.8 ( 2.2) 59.9 5.7 0.7 8.0
pp-directive 0.9 ( 1.1) 4.9 ( 4.4) 4.7 78.4 0.0 18.2
header-name 0.0 ( 0.0) 0.0 ( 0.0) – – – –

777Preprocessing tokens can be separated by white space;preprocess-
ing tokens
white space sepa-
ration

Usage
Table 770.3 shows the relative frequency of white space occurring before and after various kinds of tokens.

788keyword: one of
auto enum restrict unsigned
break extern return void
case float short volatile
char for signed while
const goto sizeof _Bool
continue if static _Complex

Characters

P
hy

si
ca

l l
in

es

1

10

100

1,000

10,000

100,000

1,000,000

0 100 200 300

××
×
××
×

×
××
××××××××××××××××××××××××××××××××××××××××××××××××××××××

×
××××××××××××××××××××××××××××××××××××××××××××××

×
×
×
×××××××××××××××××××××××××××××××××××

×

××
×
××××
××××××
×××××××××××

×
×××××
×
×
×
××
×
××
×
×
×
×
×

××

××
×××
×
×××

×
×××××××

××××
×
×
××
×
×
××
×

×
×
××
×
××××××××

××
×

×

×

×

×
××
×

×
×××××
×

××
×
×
×

×
×
×
×××
×××××
×
×
××
×

×

×

×
××
×
××××
×××
××××××

×
×
××
××
××××

•

•
•
•

•
•
•
••••
•••••••

•••••••••••••••••••••••••••••••••••••••••••••

•

••••••••••
•
••••••
•••••••

•

••
•
•••
••

••
•
•••

•

••••••••••••

•

••••••••••

•

••••••••••••••
•••
•••

•

••
•
•••••
••
•
•

•
••••
•••••
••••••
••
•

•
•

••••••
•

••
•
••

•
•
••••

••
•••
••
••
•
••
•
••
••

•
•••
••

••• •

•
•
•
•
• ••• •••• • •••

× .c files

• .h files

Tokens

0 20 40 60 80

×
×
××××××××××××××

×
×××××××

×
××××××

×

×

×××××××
×
×××××××××××

×
××

×
×

×
×
××

×
×
×
×

×
×
×
××

×
×
××

×

•

•
•
••

••
•
•
•••••••

•

••••
•
•

•
•

•
•
•
•

••
•

•

•
•
•
•
•
•

•

•

•

•

•••••

•

•

•••

•••••
•
•

•
••

••

•
•

•

••

•

•
• ••

× .c files

• .h files

Figure 770.17: Number of physical lines containing a given number of non-white-space characters and tokens. Based on the
visible form of the .c and .h files.

v 1.1 January 30, 2008



CHANGES 792

Whitespace characters between preprocessing tokens

P
re

pr
oc

es
si

ng
 to

ke
n 

pa
irs

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1 10 100

×

× × × ×

× × ×

×

×××××××

×

×××××××

×

×××××××

×

×××××××

×

××
×
××
×
×

×

×××××
×
×

×

×××××
×

×

×

×
××
×

×

×

×

×

×

×
×××

×

×××××

×

×××

×

××
×
×××

•

•
• • • • • •

•

• • •••••

•

•••••
••

•

•••••••

•

••••••
•

•

•
••••••

•

•••••••

•

••••
••

•

•

•••••
•
•

•

•
•••

•

•
•

•

•
•

• •

•

•

× .c files
• .h files

Figure 777.1: Number of pp-token pairs having the given number of white-space characters them (does do not include white
space at the start of a line— i.e., indentation white space, and end-of-line is not counted as a white-space character). Based on the
visible form of the .c and .h files.

default inline struct _Imaginary

do int switch
double long typedef
else register union

Usage
Usage information on preprocessor directives is given elsewhere (see Table 1854.1).

Table 788.1: Occurrence of keywords (as a percentage of all keywords in the respective suffixed file) and occurrence of those
keywords as the first and last token on a line (as a percentage of occurrences of the respective keyword; for .c files only). Based
on the visible form of the .c and .h files.

Keyword .c Files .h Files % Start
of Line

% End
of Line

Keyword .c Files .h Files % Start
of Line

% End
of Line

if 21.46 15.63 93.60 0.00 const 0.94 0.80 35.50 0.30
int 11.31 13.40 47.00 5.30 switch 0.75 0.77 99.40 0.00
return 10.18 12.23 94.50 0.10 extern 0.61 0.71 99.60 0.40
struct 8.10 10.33 38.90 0.30 register 0.59 0.64 95.00 0.00
void 6.24 10.27 28.70 18.20 default 0.54 0.58 99.90 0.00
static 6.04 8.07 99.80 0.60 continue 0.49 0.33 91.30 0.00
char 4.90 5.08 30.50 0.20 short 0.38 0.28 16.00 1.00
case 4.67 4.81 97.80 0.00 enum 0.20 0.27 73.70 1.80
else 4.62 3.30 70.20 42.20 do 0.20 0.25 87.30 21.30
unsigned 4.17 2.58 46.80 0.10 volatile 0.18 0.17 50.00 0.00
break 3.77 2.44 91.80 0.00 float 0.16 0.17 54.00 0.70
sizeof 2.23 2.24 11.30 0.00 typedef 0.15 0.09 99.80 0.00
long 2.23 1.49 10.10 1.70 double 0.14 0.08 53.60 3.10
for 2.22 1.06 99.70 0.00 union 0.04 0.06 63.30 6.20
while 1.23 0.95 85.20 0.10 signed 0.02 0.01 27.20 0.00
goto 1.23 0.89 94.10 0.00 auto 0.00 0.00 0.00 0.00

792
identifier

syntax

January 30, 2008 v 1.1



CHANGES792

identifier:

identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

# < . >

# 13

# 0

# 1

( [],

* )

{

,

;

* = ;

= (  );

( >  )

{

* =  ;

}

{

( =0; < ; ++)

{

(( [ ] < ’0’) ||

( [ ] > ’9’))

{

* =  ;

}

}

}

}

include string h

define MAX_CNUM_LEN

define VALID_CNUM

define INVALID_CNUM

int chk_cnum_valid char cust_num

int cnum_status

int i

cnum_len

cnum_status VALID_CNUM

cnum_len strlen cust_num

if cnum_len MAX_CNUM_LEN

cnum_status INVALID_CNUM

else

for i i cnum_len i

if cust_num i

cust_num i

cnum_status INVALID_CNUM

#include <string.h>

#define v1 13

#define v2 0

#define v3 1

int v4(char v5[],

int *v6)

{

int v7,

v8;

*v6=v2;

v8=strlen(v5);

if (v8 > v1)

{

*v6=v3;

}

else

{

for (v7=0; v7 < v8; v7++)

{

if ((v5[v7] < ’0’) ||

(v5[v7] > ’9’))

{

*v6=v3;

}

}

}

}

Figure 792.1: The same program visually presented in three different ways; illustrating how a reader’s existing knowledge of
words can provide a significant benefit in comprehending source code. By comparison, all the other tokens combined provide
relatively little information. Based on an example from Laitinen.[103]

v 1.1 January 30, 2008



CHANGES 792

Table 792.1: Mean comprehension rating and mean number of ideas recalled from passage (standard deviation is given in
parentheses). Adapted from Bransford and Johnson.[22]

No Topic Given Topic Given After Topic Given Before Maximum Score

Comprehension 2.29 (0.22) 2.12 (0.26) 4.50 (0.49) 7
Recall 2.82 (0.60) 2.65 (0.53) 5.83 (0.49) 18

Table 792.2: Break down of issues considered applicable to selecting an identifier spelling.

Visual Acoustic Semantic Miscellaneous

Memory Idetic memory Working memory is
sound based

Proper names, LTM is
semantic based

spelling, cognitive stud-
ies, Learning

Confusability Letter and word shape Sounds like Categories, metaphor Sequence comparison
Usability Careful reading, visual

search
Working memory limits,
pronounceability

interpersonal communi-
cation, abbreviations

Cognitive resources,
typing

Table 792.3: Estimates of the number of speakers each language (figures include both native and nonnative speakers of the
language; adapted from Ethnologue volume I, SIL International). Note: Hindi and Urdu are essentially the same language,
Hindustani. As the official language of Pakistan, it is written right-to-left in a modified Arabic script and called Urdu (106 million
speakers). As the official language of India, it is written left-to-right in the Devanagari script and called Hindi (469 million
speakers).

Rank Language Speakers (millions) Writing direction Preferred word order

1 Mandarin Chinese 1,075 left-to-right also top-down SVO
2 Hindi/Urdu 575 see note see note
3 English 514 left-to-right SVO
4 Spanish 425 left-to-right SVO
5 Russian 275 left-to-right SVO
6 Arabic 256 right-to-left VSO
7 Bengali 215 left-to-right SOV
8 Portuguese 194 left-to-right SVO
9 Malay/Indonesian 176 left-to-right SVO

10 French 129 left-to-right SVO
11 German 128 left-to-right SOV
12 Japanese 126 left-to-right SOV

Table 792.4: Percentage of identifiers in one program having the same spelling as identifiers occurring in various other programs.
First row is the total number of identifiers in the program and the value used to divide the number of shared identifiers in that
column). Based on the visible form of the .c files.

gcc idsoftware linux netscape openafs openMotif postgresql

46,549 27,467 275,566 52,326 35,868 35,465 18,131
gcc — 2 9 6 5 3 3
idsoftware 5 — 8 6 5 4 3
linux 1 0 — 1 1 0 0
netscape 5 3 8 — 5 7 3
openafs 6 4 12 8 — 3 5
openMotif 4 3 6 11 3 — 3
postgresql 9 5 12 11 10 6 —

January 30, 2008 v 1.1



CHANGES792

RAISE
[reIz]

FA CE
RICE
RATE

phonological
neighbors

phonographic
neighbors

RACK
[raek]

orthographic
neighbors

FA CE
[feIs]

LACE
[leIs]

PA CE
[peIs]

RATE
[reIt]

RICE
[raIs]

body
neighbors

consonant
neighbors

lead
neighbors

Figure 792.2: Example of the different kinds of lexical neighborhoods for the English word RACE. Adapted from Peereman and
Content.[137]

semantics phonology

orthography

Figure 792.3: Triangle model of word recognition. There are two routes to both semantics and phonology, from orthography.
Adapted from Harm.[78]

Figure 792.4: Cup- and bowl-like objects of various widths (ratios 1.2, 1.5, 1.9, and 2.5) and heights (ratios 1.2, 1.5, 1.9, and
2.4). Adapted from Labov.[102]

v 1.1 January 30, 2008



CHANGES 792

Relative width of container

Pe
rc

en
ta

ge
25

50

75

100

1.0 1.2 1.5 1.9 2.5

Neutral context

Food context

cup

cup

bowl

bowl

• •

•

• •

•

• •

•
•

•
•

•
•

•

•

•

Figure 792.5: The percentage of subjects who selected the term cup or bowl to describe the object they were shown (the paper
did not explain why the figures do not sum to 100%). Adapted from Labov.[102]

Commercial Event

A
buyer

D
seller

C
money

B
goods

Buy

A
Subj

D
from

C
for

B
Obj

Pay

A
Subj

D
to

C
Obj

B
for

Sell

A
to

D
Subj

C
for

B
Obj

Charge

A
Obj

D
Subj

C
sum

B
for

Figure 792.6: A commercial event involving a buyer, seller, money, and goods; as seen from the buy, sell, pay, or charge
perspective. Based on Fillmore.[67]

January 30, 2008 v 1.1



CHANGES792

Identifier length

Id
en

tifi
er

s

1 10 20 30 40 50

1

10

100

1,000

10,000

100,000

1,000,000
× × all identifiers

××××××××××××××××××××××××××××××××××××××××××××××××××××

• • unique identifiers

•

•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • •

× × all identifiers that are words
×

××
××××

×
××

×
×

×
××

• • unique identifiers that are words

•
•
•
• • • • • • •

•
•
•
• •

Figure 792.7: Number of identifiers (unique and all) of different length in the visible form of the .c files. Any identifier whose
spelling appeared in the aspell 65,000 word dictionary was considered to be a word.

Table 792.5: Occurrence of identifier declarations in various scopes and name spaces (as a percentage of all identifiers within
the scope/name space in the visible form of the .c files; unique identifiers are in parentheses) containing particular character
sequences (the phrase spelled using upper-case letters is usually taken to mean that no lower-case letters are used, i.e., digits and
underscore are included in the possible set of characters; for simplicity and accuracy the set of characters omitted are listed).

no lower-case no upper-case no underscore no digits only first character
upper-case

file scope objects 0.8 ( 1.0) 80.3 ( 79.1) 29.6 ( 25.4) 87.3 ( 85.7) 5.2 ( 5.7)
block scope objects 1.3 ( 1.8) 91.9 ( 81.3) 79.9 ( 58.9) 96.3 ( 93.0) 1.3 ( 3.1)
function parameters 0.1 ( 0.4) 94.2 ( 82.9) 88.6 ( 67.4) 96.8 ( 94.8) 1.4 ( 2.9)
function definitions 0.2 ( 0.2) 59.0 ( 62.1) 27.1 ( 24.1) 87.1 ( 86.4) 29.9 ( 27.3)
struct/union members 0.5 ( 0.8) 78.5 ( 71.8) 65.7 ( 51.3) 93.2 ( 91.4) 12.0 ( 14.2)
function declarations 0.7 ( 0.5) 55.5 ( 57.1) 27.3 ( 26.5) 88.7 ( 87.5) 32.4 ( 30.1)
tag names 5.7 ( 6.6) 60.7 ( 63.8) 25.6 ( 21.6) 88.1 ( 85.9) 18.4 ( 14.5)
typedef names 14.0 ( 17.0) 37.0 ( 33.5) 45.0 ( 40.4) 89.7 ( 89.3) 39.8 ( 37.4)
enumeration constants 55.8 ( 56.0) 10.8 ( 10.6) 16.0 ( 15.0) 79.9 ( 77.9) 32.1 ( 32.0)
label names 27.2 ( 48.1) 69.2 ( 47.4) 70.8 ( 65.6) 67.4 ( 46.3) 2.2 ( 2.3)
macro definitions 78.4 ( 79.9) 4.9 ( 5.0) 15.5 ( 13.0) 70.9 ( 69.3) 13.1 ( 11.1)
macro parameters 19.8 ( 20.4) 77.6 ( 68.7) 96.0 ( 83.6) 94.2 ( 90.7) 1.4 ( 5.0)

Table 792.6: Number of people using particular types of writing system for the top 50 world languages in terms of number of
speakers. Literacy rates from UNESCO based on typical countries for each language (e.g., China, Egypt, India, Spain). Adapted
from Cook.[47]

Total languages out of 50 Speakers (millions) Readers (millions, based
on illiteracy rates)

Character-based systems— 8 (all Chinese)
+ Japanese

1,088 930

Syllabic systems— 13 (mostly in India) +
Japanese, Korean

561 329

Consonantal systems— 4 (two Arabic) +
Urdu, Persian

148 no figures available

Alphabetic systems— 21 (worldwide) 1,572 1,232

v 1.1 January 30, 2008



CHANGES 792

Session

Pe
rc

en
ta

ge
 c

or
re

ct

1-4 5-8 9-12 13-16 17-20 21-24 25-28

0

25

50

75

100

•
• • • • • •logographic

alphabetic

Figure 792.8: Improvement in word-recognition performance with number of sessions (most sessions consisted of 16 blocks of
16 trials). Adapted from Muter and Johns.[127]

white

black

red

green

yellow

blue brown

purple
pink

orange
grey

Figure 792.9: The original Berlin and Kay[16] language color hierarchy. The presence of any color term in a language, implies
the existence, in that language, of all terms to its left. Papuan Dani has two terms (black and white), while Russian has eleven.
(Russian may also be an exception in that it has two terms for blue.)

Table 792.7: Known number of languages commonly using a particular word order. Based on Comrie.[44]

Common order Languages Example

None no figures Sanskrit
SOV 180 Turkish “Hansan ököz-ü aldι”⇒ “Hassan ox bought”
SVO 168 English “The farmer killed the duckling”
VSO 37 Welsh “Lladdodd y ddraig y dyn”⇒ “killed the dragon the man”
VOS 12 Malagasy “Nahita ny mpianatra ny vehivavy”⇒ “saw the student the woman”
OVS 5 Hixkaryana “Toto yahosi-ye kamara”⇒ “man it-grabbed-him jaguar”
OSV 2 Apurinã none available

Table 792.8: The 12 tenses of English (actually three tenses and four aspects). Adapted from Celce-Murcia.[34]

Simple Perfect Progressive Perfect progressive

Present write/writes has/have written am/is/are writing has/have been writing
walk/walks has/have walked am-is/are walking has/have been walking

Past wrote had written was/were writing had been writing
walked had walked was/were walking had been walking

Future will write will have written will be writing will have been writing
will walk will have walked will be walking will have been walking

January 30, 2008 v 1.1



CHANGES792

Number of components

Id
en

tifi
er

s

0 5 10 15

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

• • components that are words
• •

•
•

•

•
•

•
•

•
•

× × underscore delimited×
×

×
×

×
×

×
×

×
× × ×

×
×

Number of components

0 5 10 15

• • components that are words• •

•
•

•
•

•
•

•

•

× × camelcase delimited×

×
×

×
×

×
×

×
×

× ×

Figure 792.10: Number of identifiers containing a given number of components. In the left graph a component is defined as a
character sequence delimited by one or more underscore characters, _, the start of the identifier, or its ending, e.g., the identifier
big_blk_proboscis is considered to contain three components, one of which is a word. In the right graph a component is any
sequence of lower-case letters, a sequence of two or more upper-case characters (i.e., the sequence is terminated by one or more
digit characters or a letter having opposite case), or an upper-case character followed by a sequence of lower-case letters (this
form of identifier might be said to be written in camelCase). For instance, the identifier bigBlk4proboscis is considered to
contain three components, one of which is a word. A word is defined by the contents of the ispell 65,000 word list (this means,
for instance, that the character sequence proboscis is not considered to be a word). Based on the visible form of the .c files.

Table 792.9: Probability of an adjective occurring at a particular position relative to other adjectives. Adapted from Celce-
Murcia.[34]

determiner option size shape condition age color origin noun

0.80 0.97 0.66 0.79 0.85 0.77 1.0
an ugly big round chipped old blue French vase

Table 792.10: Subcategories of determiners. Adapted from Celce-Murcia.[34]

Predeterminers Core determiners Post determiners

qualifiers: all, both, half, etc. articles: a, an, the, etc. cardinal numbers: one, two, etc.
fractions: such a, what a, etc. possessives: my, our, etc. ordinal numbers: first, second, etc.
multipliers: double, twice, three
times, etc.

demonstratives: this, that, etc. general ordinals: next, last, another, etc.

quantifiers: some, any, no, each,
every, either, neither, enough, etc.

quantifiers: many, much, (a) few (a) little,
several, more, less most, least, etc.
phrasal quantifiers: a great deal, of, a lot of,
a good number of, etc.

v 1.1 January 30, 2008



CHANGES 792

(1) point in space (2) point in time

(6) circumstance

(7) cause

(3) state

(5) manner (point on scale)

(4) area

AT

(1) spatial enclosure (2) time-span

(5) means

(4) area

(3) state as enclosure

(6) circumstance as state

(7) cause as state
IN

Figure 792.11: Examples, using “at” and “in” of extensions of prepositions from physical to mental space. Adapted from
Dirven.[56]

first

language

(L1)

learner’s

independent

language

(interlanguage)

second

language

(L2)

Figure 792.12: A learner’s independent language— interlanguage. This language changes as learners go through the various
stages of learning a new language. It represents the rules and structures invented by learners, which are influenced by what they
already know, as they acquire knowledge and proficiency in a new language.

Table 792.11: Example words and total number of all mistakes for particular spelling patterns (–C– denotes any consonant).
Adapted from Sloboda.[150]

Spelling
pattern

similar phonolog-
ically

mistakes
made

dissimilar phono-
logically

mistakes
made

-ent clement 46 convert 1
-ant clemant convart
-ce promice 9 polich 1
-se promise polish
w- weight 3 sapely 1
wh- wheight shapely
-er paster 7 parret 6
-or pastor parrot
-le hostle 11 assits 1
-el hostel assist
-ayed sprayed 18 slayer 0
-aid spraid slair
-ea- deamed 24 dearth 3
-ee- deemed deerth
-CC- deppress 33 preessed 0
-C- depress pressed
-ancy currancy 27 corractly 0
-ency currency correctly
-al rival 13 livas 2
-el rivel lives

January 30, 2008 v 1.1



CHANGES792

Trial

C
or

re
ct

ly
 re

ca
lle

d

0 2 4 6 8 10

2

4

6

8

10

12

× × L4

• • L12

×

×
× × × × × × ×

×

•

•
•

• •
• • • • •

Trial

Total responses

0 2 4 6 8 10

2

4

6

8

10

12

×

×
× × × × × × × ×

•

•
•

• •
• • • •

•

Figure 792.13: Mean correct recall scores and mean number of responses (correct and incorrect) for 10 trials. Adapted from
Horowitz.[84]

C
or

re
ct

ly
 p

la
ce

d

1 3 6 9 12

0.0

0.2

0.4

0.6

0.8

1.0
Trial 1

L12
L4

Serial position
1 3 6 9 12

1.0
Trial 5

1 3 6 9 12

1.0
Trial 9

Figure 792.14: Percentage of correct orderings as a function of the trigram position within the list learned for three different
trials. Adapted from Horowitz.[84]

Table 792.12: Mean number of each kind of information recalled in each condition (maximum score: 48). Adapted from
Cohen.[42]

Name Occupation Possession

Nonword 18.6 37.1 16.5
Word 23.6 37.0 30.4

Table 792.13: Breakdown of 52,963 spelling mistakes in 25 million typed words. Adapted from Pollock and Zamora.[139]

Kind of Mistake Percentage Mistakes

omission 34
insertion 27
substitution 19
transposition 12.5
more than one 7.5

v 1.1 January 30, 2008



CHANGES 792

Levenstein distance

Id
en

tifi
er

 p
ai

rs

1 10 20 30 40 50

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000
1,000,000,000

• linux

•

•

•
•••••••••••••••••••••••••••••••••••••••••••••••••

×gcc

×

×
××××××××××××××××××××××××××××××××××××××××××××××

×

idsoftware
∗ postgress

∗

∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

Ke yboard-Levenstein distance

1 10 20 30 40 50

×gcc

×
×

×
×

×
××××××××××××

×
××××××

×

××××××××××××
×

×

×
×

×
×

×
×

×
×

×
×

×

×
×

idsoftware
∗ openafs

∗
∗

∗
∗

∗ ∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗

∗

∗∗∗∗
∗

∗
∗

∗
∗

∗

∗
∗

∗
∗

Figure 792.15: Number of identifiers having a given Levenstein distance from all other identifiers occurring in the visible
form of the .c files of individual programs (i.e., identifiers in gcc were only compared against other identifiers in gcc). The
keyboard-levenstein distance was calculated using a weight of 1 when comparing characters on immediately adjacent keyboard
keys and a weight of 2 for all other cases (the result was normalized to allow comparison against unweighted Levenstein distance
values).

English words

Id
en

tifi
er

s

1

3

5

7

9

11

13

1 3 5 7 9 11 13

a

b

c d

e

f
g h

i

j
k

l
m

n o
p

q

r s

t

u
v

wx y
z 0.2

0.5

1.0

1.5
2.0

3.0

0.2

0.5

1.0

1.5
2.0

3.0

a

b
c

d

e

f
g

h

i

j
k

l
m

n
o

p

q

r s
t

u

w
y

z

Figure 792.16: Occurrence of alphabetic letters in English text[152] and identifier names (based on the visible form of the .c
files; all letters mapped to lowercase). Left graph: the letter percentage occurrence as (x, y) coordinates; right graph: the ratio
of dividing the English by the identifier letter frequency (i.e., letters above the line are more common in English text than in
identifiers; two letters outside the range plotted are v = 0.0588 and x = 0.165).

Table 792.14: Mean number of spelling mistakes for high/low frequency words with regular/irregular spellings. Adapted from
Brown.[23]

High Frequency
Regular Spelling

Low Frequency
Regular Spelling

High Frequency
Irregular Spelling

Low Frequency
Irregular Spelling

Native speaker 0.106 4.213 0.596 7.319
Second language 0.766 7.383 2.426 9.255
Example cat, paper fen, yak of, one tsetse, ghoul

January 30, 2008 v 1.1



CHANGES792

���������
a 	�
 a a a �

��������
b ��� b b b �

���������
c  �! c c c "

#%$'&�(�)
d *�+ d d d ,

-�.�/�0�1
e 2�3 e e e 4

Figure 792.17: A number of different glyphs (different fonts are used) for various characters.

o

c

h

n l

p

b q d

v

y w

x ze u m r i f g a

j t s k

Figure 792.18: Similarity hierarchy for English letters. Adapted from Lost reference.[?]

Number of letters in sequence

R
es

po
ns

e 
tim

e 
(m

se
c)

0

200

400

600
700
800
900

4 5

• • High frequency words• • Low frequency words•
• Pronounceable nonwords•
• Unpronounceable nonwords

Figure 792.19: Response time to match two letter sequences as being identical. Adapted from Chambers and Foster.[35]

v 1.1 January 30, 2008



CHANGES 792

Letters different

R
es

po
ns

e 
tim

e 
(m

se
c)

0

400

600

800

2 4 6

random• •
word• •

•
1 letter

•
• 2 letters

•

•
•

4 letters

•

•
• 6 letters• •

•

•
•

•

•
•

Figure 792.20: Time taken (in milliseconds) to match a pair of letter sequences as being identical— for different number of
letters in the sequence and number of positions in the sequence containing a nonmatching letter. Adapted from Eichelman.[58]

M
is

sp
el

lin
gs

 m
is

se
d

0

10

20

30

function word short content word long content word

confusable letters

× distinctive letters

×

×
×

Figure 792.21: Percentage of misspellings not detected for various kinds of word. Adapted from Paap, Newsome, and Noel.[132]

Table 792.15: Response time (in milliseconds) to fail to match two letter sequences. Right column is average response time to
match identical letter sequences. Columns are ordered by which letter differed between letter sequences. Adapted from Chambers
and Foster.[35]

All Letters First Letter Third Letter Fifth Letter Same Response

Words 677 748 815 851 747
Pronounceable nonwords 673 727 844 886 873
Unpronounceable nonwords 686 791 1,007 1,041 1,007

Table 792.16: Proportion of spelling errors detected (after arcsin transform was applied to the results). Adapted from Monk and
Hulme.[125]

Same Lowercase
Word Shape

Different Lowercase
Word Shape

Same Mixedcase
Word Shape

Different Mixedcase
Word Shape

Letter deleted 0.554 0.615 0.529 0.517
Letter substituted 0.759 0.818 0.678 0.680

January 30, 2008 v 1.1



CHANGES792

Delay (secs)

Pe
rc

en
t c

or
re

ct

20

40

60

80

0 4 8

•

• •

×

×
×

Delay (secs)

80

0 2 4 8 16

• •

• •

•

acoustically similar words
×

×

×

×

×

control words

Figure 792.22: Rate of forgetting of visually presented lists of four words containing the same (solid line) or different vowels
(dashed line); left graph. Rate for two lists, one containing three acoustically similar words (solid line) and the other five control
words (dashed line); right graph. Adapted from Baddeley.[9]

Pe
rc

en
ta

ge
 e

rr
or

0

20

40

60

80

100

low high

• •

• •

high SF, high ND
high SF, low ND

low SF, high ND
low SF, low ND

Figure 792.23: Error rate at low and high neighborhood frequency. Stimulus (drug name) frequency (SF), neighborhood density
(ND). Adapted from Lambert, Chang, and Gupta.[105]

Table 792.17: Classification of recall errors for acoustically similar (AS), acoustically dissimilar (AD) pairs of letters. Semi-
transpose refers to the case where, for instance, PB is presented and BV is recalled (where V does not appear in the list). Other
refers to the case where pairs are both replaced by completely different letters. Adapted from Conrad.[46]

Number Inter-
vening Letters

Transpose
(AS)

Semi-transpose
(AS)

Other
(AS)

Transpose
(AD)

Semi-transpose
(AD)

Other
(AD)

Total

0 797 446 130 157 252 207 1,989
1 140 112 34 13 33 76 408
2 31 23 16 2 18 56 146
3 12 20 12 1 5 23 73
4 0 4 1 0 2 7 14
Total 890 605 193 173 310 369 2,630

v 1.1 January 30, 2008



CHANGES 792

Edit distance

E
rr

or
s

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9

non-drug
drug

Figure 792.24: Number of substitution errors having a given edit distance from the correct response. Grey bars denote non-drug-
name responses, while black bars denote responses that are known drug names. Based on Lambert, Chang, and Gupta.[105]

Identifier references

F
un

ct
io

n 
de

fin
iti

on
s

0 50 100 150

1

10

100

1,000

10,000
×all identifiers

×

×

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××
×××

×
×××××

×××
××

•unique identifiers••
•••••••••••••••••••••••••••••••

•••
•
•
•••
••
•••••••••

•
••••

•

••

•

••
•
•••

•

•

•

•
••••

••

•

•
•••••

•
•
•
•
•••••

••
• •

• •
••••

•
• •• • •

•

••• • • ••

Figure 792.25: Number of identifiers referenced within individual function definitions. Based on the translated form of this
book’s benchmark programs.

Identifier rank

O
cc

ur
re

nc
es

1 10 100 1,000 10,000 100,000

1

10

100

1,000

10,000

100,000

.
. . . . . . ...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................................................................................................

. . . . . . . ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.
. . . . . . ...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

a b c

Figure 792.26: Identifier rank (based on frequency of occurrence of identifiers having a particular spelling) plotted against the
number of occurrences of the identifier in the visible source of (b) Mozilla, and (c) Linux 2.4 kernel; (a) is a distribution following
Zipf’s law with the most common item occurring 10,000 times. Every identifier is represented by a dot. Also see Figure 1896.4.

January 30, 2008 v 1.1



CHANGES792

L
et

te
rs

 c
or

re
ct

25

50

75

100

A

0-order

1
2

4

.

.

. .
. .

∆

∆

∆
∆ ∆

∆

×

×

×

× × ×

B

.

.

. .
. .

∆

∆

∆
∆ ∆

∆

×

×

× × × ×

Presentation time (msecs)

L
et

te
rs

 c
or

re
ct

ly
 p

la
ce

d

10 20 40 100 200 500

25

50

75

100

C

0-order

1

2

4

.

.

.
. .

.

∆

∆

∆
∆ ∆

∆

×

×

×

×
×

×

Presentation time (msecs)
10 20 40 100 200 500

D

.

.

.
. .

.

∆

∆
∆ ∆ ∆

∆

×

×
×

×
×

×

Figure 792.27: Number of correct letters regardless of position (A), and number of correct letters placed in the correct position
(C). Normalizing for information content, the corresponding results are (B) and (D), respectively. Plotted lines denote 0-, 1-, 2-,
and 4-order approximations to English words (see Table 792.18). Adapted from Miller, Bruner, and Postman.[122]

Table 792.18: Examples of nonwords. The 0-order words were created by randomly selecting a sequence of equally probable
letters, the 1-order words by weighting the random selection according to the probability of letters found in English words, the
2-order words by weighting the random selection according to the probability of a particular letter following the previous letter in
the nonword (for English words), and so on. Adapted from Miller[122]).

0-order 1-order 2-order 4-order

YRULPZOC STANUGOP WALLYLOF RICANING
OZHGPMTJ VTYEHULO RGERARES VERNALIT
DLEGQMNW EINOAASE CHEVADNE MOSSIANT
GFUJXZAQ IYDEWAKN NERMBLIM POKERSON
WXPAUJVB RPITCQET ONESTEVA ONETICUL
VQWVBIFX OMNTOHCH ACOSUNST ATEDITOL
CVGJCDHM DNEHHSNO SERRRTHE APHYSTER
MFRSIWZE RSEMPOIN ROCEDERT TERVALLE

Table 792.19: Words that make up 19 of the 46 words beginning with the English /gl/ of the monomorphemic vocabulary (Note:
The others are: globe, glower, glean, glib, glimmer, glimpse, gloss, glyph, glib, glide, glitter, gloss, glide, glissade, glob, globe,
glut, glean, glimmer, glue, gluten, glutton, glance, gland, glove, glad, glee, gloat, glory, glow, gloom, glower, glum, glade, and
glen). Adapted from Magnus.[114]

Concept Denoted Example Words

Reflected or indirect light glare, gleam, glim, glimmer, glint, glisten, glister, glitter, gloaming, glow
Indirect use of the eyes glance, glaze(d), glimpse, glint
Reflecting surfaces glacé, glacier, glair, glare, glass, glaze, gloss

v 1.1 January 30, 2008



CHANGES 792

Target position

R
es

po
ns

e 
tim

e 
(m

se
c)

200

600

1000

1 2 3 4 5

English speakers

• •
shapes

•
• • •

•

× ×
Roman

× × × × ×

Target position
1 2 3 4 5

Arabic speakers

∆ ∆
Arabic

∆
∆ ∆ ∆

∆

× ×
Roman

× ×
× × ×

Target position
1 2 3 4 5

Chinese speakers

Chinese
× ×
Roman

× × × × ×

Figure 792.28: Mean response time (in milliseconds) for correct target detection as a function of the position of the match within
the character sequence. Adapted from Green and Meara.[75]

#include <string.h>

#define MAXIMUM_CUSTOMER_NUMBER_LENGTH 13

#define VALID_CUSTOMER_NUMBER 0

#define INVALID_CUSTOMER_NUMBER 1

int check_customer_number_is_valid(char possibly_valid_customer_number[],

int *customer_number_status)

{

int customer_number_index,

customer_number_length;

*customer_number_status=VALID_CUSTOMER_NUMBER;

customer_number_length=strlen(possibly_valid_customer_number);

if (customer_number_length > MAXIMUM_CUSTOMER_NUMBER_LENGTH)

{

*customer_number_status=INVALID_CUSTOMER_NUMBER;

}

else

{

for (customer_number_index=0; customer_number_index < customer_number_length; customer_number_index++)

{

if ((possibly_valid_customer_number[customer_number_index] < ’0’) ||

(possibly_valid_customer_number[customer_number_index] > ’9’))

{

*customer_number_status=INVALID_CUSTOMER_NUMBER;

}

}

}

}

Figure 792.29: Example of identifier spellings containing lots of characters. Based on an example from Laitinen.[103]

January 30, 2008 v 1.1



CHANGES792

E
rr

or

0

3

6

9

12

nonword low high

Lexical decision

•

•

•

∆

∆

∆

12

nonword low high

Naming

• Hebrew
English

∆ Serbo-Croatian

• •

•

∆

∆ ∆

Figure 792.30: Error (as a percentage of responses) for naming and lexical decision tasks in Hebrew, English, and Serbo-Croatian
using high/low frequency words and nonwords. Adapted from Frost, Katz, and Bentin.[71]

Table 792.20: WordNet 2.0 database statistics.

Part of Speech Unique Strings Synsets Total Word-sense Pairs

Noun 114,648 79,689 141,690
Verb 11,306 13,508 24,632
Adjective 21,436 18,563 31,015
Adverb 4,669 3,664 5,808
Total 152,059 115,424 203,145

Table 792.21: The syllable most likely to be omitted in a word (indicated by the × symbol) based on the number of syllables (syl)
and the position of the primary, (pri) stressed syllable. Adapted from Carter and Clopper.[30]

Syllables in Word and
Primary Stress Position

Syllable(s)
1

Omitted
2

Most
3

Often
4

2syl–1pri × – –
2syl–2pri × – –
3syl–1pri × × –
3syl–2pri × –
3syl–3pri × × –
4syl–1pri ×
4syl–2pri × ×
4syl–3pri × × ×

Table 792.22: Five different applications (A–E) unabbreviated using InName, by five different people. Application C had many
short names of the form i, m, k, and r2. Adapted from Laitinen.[104]

Application A B C D E

Source lines 12,075 6,114 3,874 6,420 3,331
Total names 1,410 927 439 740 272
Already acceptable 5.6 3.1 8.7 9.3 11.0
Tool suggestion used 42.6 44.7 35.3 46.8 41.5
User suggestion used 39.6 29.3 15.0 30.7 43.8
Skipped or unknown names 12.2 22.9 41.0 13.2 3.7
User time (hours) 11 5 4 4 3

v 1.1 January 30, 2008



CHANGES 792

duty

responsibility
0.21, 0.21

post
0.14, 0.14

task
0.10, 0.10

operation
0.10, 0.10

penalty
0.09, 0.09

reservist
0.07, 0.07

role
0.12, 0.11

obligation
0.12, 0.10

power
0.17, 0.08

accountability
0.14, 0.08

experience
0.12, 0.07

job
0.17, 0.10

position
0.25, 0.10

chore
0.11, 0.07

function
0.10, 0.08

mission
0.12, 0.07

staff
0.10, 0.07

fee
0.17, 0.08

action
0.11, 0.10

jurisdiction
.13, 0.08

right
0.12, 0.07

control
0.20, 0.07

ground
0.08, 0.07

change
0.24, 0.08

challenge
0.13, 0.07

measure
0.22, 0.07

rule
0.16, 0.08

issue
0.13, 0.07

restriction
0.27, 0.08

schedule
0.11, 0.07

regulation
0.37, 0.07

ban
0.30, 0.08

sanction
0.19, 0.08

reason
0.14, 0.07

matter
0.28, 0.07

work
0.17, 0.10

training
0.11, 0.07

patrol
0.07, 0.07

tariff
0.13, 0.08

tax
0.19, 0.07

Figure 792.31: Semantic similarity tree for duty. The first value is the computed similarity of the word to its parent (in the tree),
the second value its similarity to duty. Adapted from Lin.[112]

English tree wood forest

French abre bois forêt

Dutch boom hout bos woud

German Baum Holz Wald

Danish trae skov

Figure 792.32: The relationship between words for tracts of trees in various languages. The interpretation given to words
(boundary indicated by the zigzags) in one language may overlap that given in other languages. Adapted from DiMarco, Hirst,
and Stede.[55]

January 30, 2008 v 1.1



CHANGES797

Pe
rc

en
ta

ge

20

40

60

1 syllable 2 syllables 3 syllables multiple words

• • truncation

•
•

•

•

× × popular

×

×
×

×

× × rule

×

×
× ×

• • vowel deletion•

•

•
•

Figure 792.33: Percentage of abbreviations generated using each algorithm. The rule case was a set of syllable-based rules
created by Streeter et al.; the popular case was the percentage occurrence of the most popular abbreviation. Based on Streeter,
Ackroff, and Taylor.[160]

Table 792.23: Distribution of mistakes for each kind of text. Unparenthesized values are for subjects who made fewer than 2.5%
mistakes, and parenthesized values for subjects who made 2.5% or more mistakes. Omission— failing to type a letter; response—
hitting a key adjacent to the correct one; reading— mistakes were those letters that are confusable visually or acoustically; context
— transpositions of adjacent letters and displacements of letters appearing within a range of three letters left or right of the mistake
position; random— everything else. When a mistake could be assigned to more than one category, the category appearing nearer
the top of the table was chosen. Adapted from Shaffer.[148]

Kind of mistake Prose Word Syllable First Order Zero Order Total

Omission 19 (21) 11 (23) 24 ( 36) 15 (46) 34 ( 82) 103 (208)
Response 19 (25) 31 (38) 27 ( 53) 32 (43) 108 (113) 217 (272)
Reading 3 ( 2) 2 ( 0) 8 ( 15) 14 (20) 20 ( 41) 47 ( 78)
Context 19 (27) 19 (17) 34 ( 30) 56 (51) 46 ( 40) 174 (165)
Random 3 ( 5) 2 ( 6) 4 ( 11) 13 (15) 22 ( 41) 44 ( 78)
Total 63 (80) 65 (84) 97 (145) 130 (175) 230 (317) 585 (801)

Table 792.24: Mean response time per letter (in milliseconds). Right half of the table shows mean response times for the same
subjects with comparable passages in the first experiment. Adapted from Shaffer.[148]

Syllable Random First Order Zero Order

5-letter 246 326 Fixed 236 344
15-letter 292 373 Random 242 343

795There is no specific limit on the maximum length of an identifier.

Usage

The distribution of identifier lengths is given in Figure 792.7.

797The initial character shall not be a universal character name designating a digit.

v 1.1 January 30, 2008



CHANGES 822

Identifiers

P
hy

si
ca

l l
in

es

0 5 10 20 30

1

10

100

1,000

10,000

100,000

1,000,000
×

× × × × × × × × × × × ×
× × × × × × × × × × × × × ×

× × ×

Figure 792.34: Number of physical lines containing a given number of identifiers. Based on the visible form of the .c files.

Table 797.1: The Unicode digit encodings.

Encoding Range Language Encoding Range Language

0030–0039 ISO Latin-1 0BE7–0BEF Tamil (has no zero)
0660–0669 Arabic–Indic 0C66–0C6F Telugu
06F0–06F9 Eastern Arabic–Indic 0CE6–0CEF Kannada
0966–096F Devanagari 0D66–0D6F Malayalam
09E6–09EF Bengali 0E50–0E59 Thai
0A66–0A6F Gurmukhi 0ED0–0ED9 Lao
0AE6–0AEF Gujarati FF10–FF19 Fullwidth
0B66–0B6F Oriya digits

806 The number of significant characters in an identifier is implementation-defined.

822
constant

syntax

constant:
integer-constant
floating-constant
enumeration-constant
character-constant

Significant characters

%
id

en
tic

al
 m

at
ch

es

6 10 20 30 40 50

0.001

0.01

0.1

1

10

100 × × gcc××××××××××××××××××××××××××××××

××
×

××
×

. . idsoftware
. . . . . . . . . . . . . . . . . . .

.
.

. . . .

∆ ∆ linux

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆
∆

∆
∆∆

∆∆∆∆
∆

• • mozilla

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Figure 806.1: Occurrence of unique identifiers whose significant characters match those of a different identifier (as a percentage
of all unique identifiers in a program), for various numbers of significant characters. Based on the visible form of the .c files.

January 30, 2008 v 1.1



CHANGES825

Table 822.1: Occurrence of different kinds of constants (as a percentage of all tokens). Based on the visible form of the .c and
.h files.

Kind of Constant .c files .h files

character-constant 0.16 0.06
integer-constant 6.70 20.79
floating-constant 0.02 0.20
string-literal 1.02 0.74

825
integer constant
syntax

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
0x 0X

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
l L

long-long-suffix: one of
ll LL

Usage

Having some forms of constant tokens (also see Figure 842.1) follow Benford’s law[82] would not beinteger constant
usage surprising because the significant digits of a set of values created by randomly sampling from a variety of

different distributions converges to a logarithmic distribution (i.e., Benford’s law).[81] While the results for
decimal-constant (see Figure 825.2) may appear to be a reasonable fit, applying a chi-squared test shows
the fit to be remarkably poor (χ2 = 132,398). The first nonzero digit of hexadecimal-constants appears to
be approximately evenly distributed.

v 1.1 January 30, 2008



CHANGES 825

decimal-constant value

O
cc

ur
re

nc
es

0 2 8 32 128 512

1

10

100

1,000

10,000

100,000

. .
. . . . ..

.
.......

.

...
.
...
.
...
.
.
..
.
.
..
.
...
.

.....
.
.
.
.
.
.....
.
..
.
.

..
.
.

....
.
......
....
.
............
.......
.

.......
.......
.....
.
......
.

.

.

.

.

..

......
.
.
.
.
......
..........
.
.
..........
...
.
.............
.
.
.
.

.......
.
.
..................
....
.
.
..............
.
.....
....
....
.

..

..............
.
...................
.
.
...
....
.
.....
..
..
..........
.
.............
...........
.......
.......
......
.
............
......
.
..........
.....
.

...................

.

.................
.
..
...
......
..........
....
...............

..

.

......

.....

.......

.

.........

.

.

.

...........

...

.

.

.......

.........

.

................
.
..........
.....
...........
...........

.

..........

.

....

.

...

..

.....

.............

.

............

.......

...

.

.....

.

..

....

.

.

.

.........

...

......

.

..

....................
.
.
.
....
.........
.
...
.
....
...
..
.
.
...
.
.
......
.
....

.

.

....

..

........

......

.....

...

.

.

.

........

...

.

...........

..

...

...

..........

..................

.

.

............................
..........
....................
.........
.....................
..................
............
...................
.

.

...................

...

.

hexadecimal-constant value

0 2 8 32 128 512

.

. . . . . .........
..
.......

.
.....
.
..
.......
........
.
.....
.
.
.
...
.
.
.
..

...............................
.
.....
.
.........
.
.......
.
...
.
.
..
.
...............................................................

.

...............................
................
.
.............
.
.

.

.

.

.

....

.

...

.

...

.

.......

.

.......

.

...

.

.

..

.

..

..

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

.

.

...

.

.

..

...

.

.

.

.

.

...

..

.

.

.

..

.

.

...

.

...

.

.

..

.

....

..

.

.

...

..

...

...

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

....

...

.

.

.

.

.

.

.

.

....

..

.

..

....

.

.

.

...

..

.

.

....

.

.

.

.

....

.

.

...

.

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

.....

.

.

.

...

....

.

.

..

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

....

.

.

..

..

.

...

.

.

..

.

.

..

.

.

...

.

..

.

.

...

..

.

.

..

.

.

..

.

..

.....

.

.

..

.

.

.

.

.

..

..

..

.

.

..

.

...

.

.

.

.

.

.

..

.

..

..

.

.

...

..

..

.

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

..

.

.

.

.

..

.

...

........

.

.......

.

.

.

..

.

..

.

......

....

..

......

.

...

.

...

.

..

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

.

.

.

...

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 825.1: Number of integer constants having the lexical form of a decimal-constant (the literal 0 is also included in this
set) and hexadecimal-constant that have a given value. Based on the visible form of the .c and .h files.

First non-zero digit

Pr
ob

ab
ili

ty
 o

f 
ap

pe
ar

in
g

1 2 3 4 5 6 7 8 9 A B C D E F

1

10

100

decimal

hexadecimal

Figure 825.2: Probability of a decimal-constant or hexadecimal-constant starting with a particular digit; based on .c files.
Dotted lines are the probabilities predicted by Benford’s law (for values expressed in base 10 and base 16), i.e., log(1 + d−1),
where d is the numeric value of the digit.

Table 825.1: Occurrence of various kinds of integer-constants (as a percentage of all integer constants; note that zero is
included in the decimal-constant count rather than the octal-constant count). Based on the visible form of the .c and .h
files.

Kind of integer-constant .c files .h files

decimal-constant 64.1 17.8
hexadecimal-constant 35.8 82.1
octal-constant 0.1 0.2

Table 825.2: Occurrence of various integer-suffix sequences (as a percentage of all integer-constants). Based on the
visible form of the .c and .h files.

Suffix Character Sequence .c files h. files Suffix Character Sequence .c files .h files

none 99.6850 99.5997 Lu/lU 0.0005 0.0001
U/u 0.0298 0.0198 LL/lL/ll 0.0072 0.0022
L/l 0.1378 0.2096 ULL/uLl/ulL/Ull 0.0128 0.0061
U/uL/ul 0.1269 0.1625 LLU/lLu/LlU/llu 0.0000 0.0000

January 30, 2008 v 1.1



CHANGES836

Table 825.3: Common token pairs involving integer-constants. Based on the visible form of the .c files.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

, integer-constant 42.9 56.5 ( integer-constant 2.8 3.4
integer-constant ] 6.4 44.4 == integer-constant 25.5 2.0
integer-constant , 58.2 44.2 return integer-constant 18.6 1.9
integer-constant ; 14.1 12.1 + integer-constant 33.7 1.9
integer-constant ) 14.2 11.7 & integer-constant 30.6 1.5
integer-constant # 1.4 9.1 identifier integer-constant 0.3 1.5
= integer-constant 19.6 9.0 - integer-constant 44.0 1.3
[ integer-constant 39.3 5.6 < integer-constant 40.0 1.3
integer-constant } 1.2 4.4 { integer-constant 4.2 1.2
-v integer-constant 69.0 4.1

830A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal digits and thehexadecimal
constant letters a (or A) through f (or F) with values 10 through 15 respectively.

Table 830.1: Occurrence of hexadecimal-constants containing a given number of digits (as a percentage of all such constants).
Based on the visible form of the .c files.

Digits Occurrence Digits Occurrence Digits Occurrence Digits Occurrence

0 0.003 5 0.467 10 0.005 15 0.000
1 1.092 6 0.226 11 0.001 16 0.209
2 59.406 7 0.061 12 0.001
3 1.157 8 2.912 13 0.000
4 34.449 9 0.010 14 0.000

835The type of an integer constant is the first of the corresponding list in which its value can be represented.integer constant
type first in list

Table 835.1: Occurrence of integer-constants having a particular type (as a percentage of all such constants; with the type
denoted by any suffix taken into account) when using two possible representations of the type int (i.e., 16- and 32-bit). Based on
the visible form of the .c and .h files.

Type 16-bit int 32-bit int

int 94.117 99.271
unsigned int 3.493 0.414
long 1.805 0.118
unsigned long 0.557 0.138
other-types 0.029 0.059

836
v 1.1 January 30, 2008



CHANGES 842

integer constant
possible types

Suffix Decimal Constant Octal or Hexadecimal Constant

none int int
long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int

ll or LL long long int long long int
unsigned long long int

Both u or U unsigned long long int unsigned long long int
and ll or LL

Suffix Decimal Constant

none int
long int
unsigned long int

l or L long int
unsigned long int

842
floating constant

syntax

floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part floating-suffixopt
fractional-constant:

digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit

January 30, 2008 v 1.1



CHANGES842

digit-sequence digit
hexadecimal-fractional-constant:

hexadecimal-digit-sequenceopt .
hexadecimal-digit-sequence

hexadecimal-digit-sequence .
binary-exponent-part:

p signopt digit-sequence
P signopt digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f l F L

Usage

Exponent usage information is given elsewhere. Also see elsewhere for a discussion of Benford’s law andexponent 334
integer

constantusage

825
the first non-zero digit of constants (χ2 = 1,680 is a very poor fit).

Table 842.1: Occurrence of various floating-suffixes (as a percentage of all such constants). Based on the visible form of
the .c and .h files.

Suffix Character Sequence .c files .h files

none 98.3963 99.7554
F/f 1.4033 0.1896
L/l 0.2005 0.0550

First non-zero digit

Pr
ob

ab
ili

ty
 o

f 
ap

pe
ar

in
g

1 2 3 4 5 6 7 8 9

1

10

100

Figure 842.1: Probability of a decimal-floating-constant (i.e., not hexadecimal) starting with a particular digit. Based on
the visible form of the .c files. Dotted line is the probability predicted by Benford’s, i.e., log(1 + d−1), where d is the numeric
value of the digit.

v 1.1 January 30, 2008



CHANGES 866

characters before dp characters after dp

flo
a

tin
g

-c
o

n
st

a
n

ts

40 30 20 10 dp 10 20 30 40

1

10

100

1,000

10,000

××

××

× ××
×

×
×× ××

×

×
×

×

×

×

××

×
×

××

×
•
•

•

•

•

•

•
•

•

•

•

•

•

•
•• •

•

× .c files

• .h files

Digits in floating-constant

0 10 20 30

×

×
×

×
×

×
×

×

×

×

×
×

×
×

×•

•

•

•
•

•

•

•
•

• •

•

× .c files

• .h files

Figure 844.1: Number of floating-constants, that do not contain an exponent part, containing a given number of digit
sequences before and after the decimal point (dp), and the total number of digit in a floating-constant. Based on the visible
form of the .c and .h files.

|
a

|
b

|
c

|
d

|
e

•
X

•
Y

Figure 852.1: The nearest representable value to X is b, however, its value may also be rounded to a or c. In the case of Y , while
d is the nearest representable value the result may be rounded to c or e.

Table 842.2: Common token pairs involving floating-constants. Based on the visible form of the .c files.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

, floating-constant 0.0 20.4 floating-constant / 5.8 1.8
= floating-constant 0.1 15.7 *= floating-constant 6.3 1.6
* floating-constant 0.2 12.5 floating-constant * 6.8 0.1
( floating-constant 0.0 8.8 floating-constant ; 26.5 0.1
+ floating-constant 0.4 7.7 floating-constant ) 25.9 0.1
-v floating-constant 0.3 6.7 floating-constant , 25.8 0.1
/ floating-constant 2.0 6.4

844 The components of the significand part may include a digit sequence representing the whole-number part, whole-
number part
fraction partfollowed by a period (.), followed by a digit sequence representing the fraction part.

852 For decimal floating constants, and also for hexadecimal floating constants when FLT_RADIX is not a power of floating constant
representable
value chosen2, the result is either the nearest representable value, or the larger or smaller representable value immediately

adjacent to the nearest representable value, chosen in an implementation-defined manner.

866
charac-

ter constant
syntax

escape sequence
syntaxcharacter-constant:

’ c-char-sequence ’
L’ c-char-sequence ’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

January 30, 2008 v 1.1



CHANGES866

escape-sequence:

simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Table 866.1: Occurrence of various kinds of character-constant (as a percentage of all such constants). Based on the visible
form of the .c files.

Kind of character-constant % of all character-constants

not an escape sequence 76.1
simple-escape-sequence 8.8
octal-escape-sequence 15.1
hexadecimal-escape-sequence 0.0
universal-character-name 0.0

Table 866.2: Occurrence of escape-sequences within character-constants and string-literals (as a percentage of
escape-sequences for that kind of token). Based on the visible form of the .c files.

Escape
Sequence

% of
character-constant
Escape Sequences

% of
string-literal
escape sequences

Escape
sequence

% of
character-constant
Escape Sequences

% of
string-literal
Escape Sequences

\n 18.10 79.15 \b 0.66 0.04
\t 3.90 11.62 \’ 3.24 0.02
\" 1.29 3.08 \% 0.00 0.02
\0 52.70 2.06 \v 0.31 0.01
\x 0.12 1.10 \p 0.00 0.01
\2 2.73 1.01 \f 0.44 0.01
\\ 5.70 0.61 \? 0.01 0.01
\r 3.01 0.46 \e 0.00 0.00
\3 4.95 0.42 \a 0.11 0.00
\1 2.72 0.35

v 1.1 January 30, 2008



CHANGES 885

ASCII value

R
el

at
iv

e 
oc

cu
rr

en
ce

0 10 25 50 75 100 125

0.25

0.50

0.75

1.0 .

........
.

.

..
.
..................

.

.
.
.......

...
..

.

.

........
..

..
..

.
.

.

.
.........

.......
........

.
.
..

.
.

.

...
....

.
....

....
.................

\0

\t
\n

sp 0

: A

L S
\

a
e i n t

z

Figure 884.1: Relative frequency of occurrence of characters in an integer character-constant (as a fraction of the most
common character, the null character). Based on the visible form of the .c files.

Table 866.3: Common token pairs involving character-constants. Based on the visible form of the .c files.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

== character-constant 7.1 22.8 character-constant || 4.2 4.2
, character-constant 0.3 18.1 character-constant && 5.3 3.3
case character-constant 8.5 16.7 <= character-constant 7.1 1.7
= character-constant 0.8 14.2 >= character-constant 3.6 1.5
!= character-constant 5.3 8.4 character-constant ) 33.0 0.7
( character-constant 0.1 6.1 character-constant , 17.6 0.3
character-constant : 16.7 6.0 character-constant ; 16.6 0.3

884 The value of an integer character constant containing a single character that maps to a single-byte execution character
constant

valuecharacter is the numerical value of the representation of the mapped character interpreted as an integer.

Table 884.1: Occurrence of a character-constant appearing as one of the operands of various kinds of binary operators (as a
percentage of all such constants; includes escape sequences). Based on the visible form of the .c files. See Table 866.3 for more
detailed information.

Operator %

Arithmetic operators 4.5
Bit operators 0.5
Equality operators 31.3
Relational operators 4.1

885 The value of an integer character constant containing more than one character (e.g., ’ab’), or containing a character
constant

more than
one character

character or escape sequence that does not map to a single-byte execution character, is implementation-
defined.

January 30, 2008 v 1.1



CHANGES912

Table 885.1: Number of character-constants containing a given number of characters. Based on the visible form of the .c
files.

Number of Characters Occurrences Number of Characters Occurrences

0 27 4 21
1 50,590 5 4
2 0 6 4
3 8 7 0

895
string literal
syntax

string-literal:
" s-char-sequenceopt "
L" s-char-sequenceopt "

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \\, or new-line character
escape-sequence

Usage
Usage of escape sequences in string literal and string lengths is given elsewhere (see Table 866.2 and
Figure 293.1).

899In translation phase 6, the multibyte character sequences specified by any sequence of adjacent character
and wide string literal tokens are concatenated into a single multibyte character sequence.

Usage
In the visible form of the .c files 4.9% (.h 15.6%) of all string literals are concatenated (i.e., immediately
adjacent to another string literal) and 1.4% (.h 10.7%) occupied more than one source line (i.e., line splicingline splicing

occurred).

907The value of a string literal containing a multibyte character or escape sequence not represented in the
execution character set is implementation-defined.

Usage
In the visible form of the .c files 2.1% (.h 2.9%) of characters in string literals are not in the basic execution
character set (the value of escape sequences were compared using the values of the Ascii character set).

908It is unspecified whether these arrays are distinct provided their elements have the appropriate values.string literal
distinct array

Table 908.1: Number of string-literals (the empty string-literal, i.e., "", was not counted). Based on the visible form
of the .c and .h files. Although many of the program source trees contain more than one program, they were treated as a single
entity. A consequence of this is that the number of unique matches represents a lower bound; having a smaller number of string
literals is likely to reduce the probability of matches occurring.

gcc idsoftware linux netscape openafs openMotif postgresql Total

Number of strings 38,063 21,811 177,224 30,358 30,574 11,285 16,387 325,702
Bytes in strings 656,366 324,667 4,050,258 512,766 737,015 288,018 298,888 6,867,978
Number of unique strings 18,602 9,148 114,170 17,192 18,483 7,401 7,930 187,549
Bytes in unique strings 434,028 170,170 3,189,466 378,917 562,555 240,811 219,690 5,159,385

v 1.1 January 30, 2008



CHANGES 912

912

punctuator
syntax

punctuator: one of
[ ] ( ) { } . ->
++ -- & * + - ~ !
/ % << >> < > <= >= == != ^ | && ||
? : ; ...
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
<: :> <% %> %: %:%:

January 30, 2008 v 1.1



CHANGES916

Table 912.1: Commonly used terms for punctuators and operators.

Punctuator/
Operator

Term Punctuator/
Operator

Term

[ ] left square bracket or opening
square bracket or bracket

^ circumflex or xor or exclusive or

( ) left round bracket or opening round
bracket or bracket or parenthesis

| vertical bar or bitwise or or or

{ } left curly bracket or opening curly
bracket or bracket or brace

&& and and or logical and

. dot or period or full stop or dot
selection

|| logical or or or

-> indirect or indirect selection ? question mark
* times or star or dereference or

asterisk
: colon

+ plus ; semicolon
- minus or subtract ... dot dot dot or ellipsis
~ tilde or bitwise not = equal or assign
! exclamation or shriek *= times equal
++ plus plus /= divide equal
-- minus minus %= percent equal or remainder equal
& and or address of or ampersand or

bitwise-and
+= plus equal

/ slash or divide or solidus -= minus equal
% remainder or percent <<= left-shift equal
<< left-shift >>= right-shift equal
>> right-shift &= and equal
< less than ^= xor equal or exclusive or equal
> greater than |= or equal
<= less than or equal , comma
>= greater than or equal # hash or sharp or pound
== equal ## hash hash or sharp sharp or pound

pound
!= not equal <: :>

<% %> %:
%:%:

no commonly used terms

Table 912.2: Occurrence of punctuator tokens (as a percentage of all tokens; multiply by 1.88 to express occurrence as a
percentage of all punctuator tokens). Based on the visible form of the .c and .h files.

Punctuator % of Tokens Punctuator % of Tokens Punctuator % of Tokens Punctuator % of Tokens

, 8.82 == 0.53 || 0.16 -= 0.03
) 8.09 : 0.46 += 0.11 ++v 0.02
( 8.09 -v 0.40 > 0.11 % 0.02
; 7.80 *p 0.40 << 0.09 --v 0.01
= 3.08 + 0.38 ?: 0.08 ... 0.01
-> 3.00 *v 0.34 ? 0.08 >>= 0.01
} 1.87 & 0.32 |= 0.08 ^ 0.01
{ 1.87 ! 0.31 >= 0.07 +v 0.00
. 1.26 v++ 0.27 / 0.06 %= 0.00
* 1.10 && 0.26 >> 0.06 ## 0.00
# 1.00 != 0.26 ~ 0.05 *= 0.00
] 0.96 < 0.22 v-- 0.04 /= 0.00
[ 0.96 - 0.19 &= 0.04 <<= 0.00
&v 0.58 | 0.17 <= 0.04 ^= 0.00

916In all aspects of the language, the six tokens67)digraphs

v 1.1 January 30, 2008



CHANGES 933

<: :> <% %> %: %:%:

behave, respectively, the same as the six tokens

[ ] { } # ##

except for their spelling.68)

Usage
The visible form of the .c files contained zero digraphs.

918
header name

syntax

header-name:
< h-char-sequence >
" q-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

the new-line character and >
q-char-sequence:

q-char
q-char-sequence q-char

q-char:
any member of the source character set except

the new-line character and "

Usage
Header name usage information is given elsewhere. 1896 source file

inclusion

933
footnote
DR324

DR324) For an example of a header name preprocessing token used in a #pragma directive, see Subclause
6.10.9.

Usage
While over 30% of the characters in this book’s benchmark programs (see Table 770.3) are contained within
comments, they only represent around 2% of the tokens. A study by Fluri et al[68] of the releases of three
large Java programs over a 6 year period (on average) found three different patterns in the ratio of number of
comment lines to number of non-comment lines for each program.
A study of comments in C++ source by Etzkorn[65] found that 57% contained English sentences (that could
be automatically parsed by the tool used).

Table 933.1: Common formats of nonsentence style comments. Adapted from Etzkorn, Bowen, and Davis.[65]

Style of Comment Example

Item name— Definition MaxLength— Maximum CFG Depth.
Definition Maximum CFG Depth.
Unattached prepositional phrase To support scrolling text.
Value definitions 0 = not selected, 1 = is selected.
Mathematical formulas Can be Boolean expressions...

January 30, 2008 v 1.1



CHANGES940

Table 933.2: Breakdown of comments containing parsable sentences. Adapted from Etzkorn, Bowen, and Davis.[65]

Percentage Style of Sentence Example

51 Operational description This routine reads the data. Then it opens the file.
44 Definition General Matrix— rectangular matrix class.
2 Description of definition This defines a NIL value for a list.
3 Instructions to reader See the header at the top of the file.

Table 933.3: Common formats of sentence-style comments. Adapted from Etzkorn, Bowen, and Davis.[65]

Part of Speech Percentage Example

Present Tense 75
Indicative mood, active voice This routine reads the data.
Indicative mood, active voice,
missing subject

Reads the data.

Imperative mood, active voice Read the data.
Indicative mood, passive voice This is done by reading the data.
Indicative mood, passive voice,
missing subject

Is done by reading the data.

Past Tense 4
Indicative mood, either active
or passive voice, occasional
missing subject

This routine opened the file. or Opened the file.

Future Tense 4
Indicative mood, either active
or passive voice, occasional
missing subject

This routine will open the file. or Will open the file.

Other 15

934Except within a character constant, a string literal, or a comment, the characters /* introduce a comment.comment
/*

Table 934.1: Four types of questions.

Statement Relative to Fact Example

true-affirmative (TA) star is above plus:

?+

false-affirmative (FA) plus is above star:

+
?

false-negative (FN) star isn’t above plus:

?+

true-negative (TN) plus isn’t above star:

?+

Table 934.2: Occurrence of kinds of comments (as a percentage of all comments; last row as a percentage of all new-line
characters). Based on the visible form of the .c and .h files.

Kind of Comment .c files .h files

/* comment */ 91.0 90.1
// comment 9.0 9.9
/* on one line */ 70.3 79.1
new-lines in /* comments 12.3 17.5

940An expression is a sequence of operators and operands that specifies computation of a value, or thatexpressions

v 1.1 January 30, 2008



CHANGES 940

Dest X3 X2 X1 X0

Src Y3 Y2 Y1 Y0

Dest Y3 ... Y0 Y3 ... Y0 X3 ... X0 X3 ... X0

Figure 940.1: The SHUFPS (shuffle packed single-precision floating-point values) instruction, supported by the Intel Pentium
processor,[87] places any two of the four packed floating-point values from the destination operand into the two low-order
doublewords of the destination operand, and places any two of the four packed floating-point values from the source operand into
the two high-order doublewords of the destination operand. By using the same register for the source and destination operands,
the SHUFPS instruction can shuffle four single-precision floating-point values into any order.

S 1

she
vp

liked
np

the man
cl

that
vp

visited
np

the jeweler
cl

that
vp

made
np

the ring
cl

that
vp

won
np

the prize
cl

that
vp

was giv en
at the fair

S 2

np

the prize
cl

that
s

np

the ring
cl

that
s

np

the jeweler
cl

that
s

np

the man
cl

that
she liked

vp

at the fairwas giv en

vp

won

vp

made

vp

visited

Figure 940.2: Parse tree of a sentence with no embedding (S 1) and a sentence with four degrees of embedding (S 2). Adapted
from Miller and Isard.[123]

January 30, 2008 v 1.1



CHANGES940

designates an object or a function, or that generates side effects, or that performs a combination thereof.

Table 940.1: Occurrence of a token as the last token on a physical line (as a percentage of all occurrences of that token and as a
percentage of all lines). Based on the visible form of the .c files.

Token % Occurrence
of Token

% Last Token
on Line

Token % Occurrence
of Token

% Last Token
on Line

; 92.2 36.0 #else 89.1 0.2
\* ... *\ 97.9 8.4 int 5.3 0.2
) 20.6 8.3 || 23.7 0.2
{ 86.7 8.1 | 12.3 0.1
} 78.9 7.4 + 3.8 0.1
, 13.9 6.1 ?: 7.3 0.0
: 74.3 1.7 ? 7.1 0.0
header-name 97.7 1.5 do 21.3 0.0
\\ 100.0 0.9 #error 25.1 0.0
#endif 81.9 0.8 :b 7.2 0.0
else 42.2 0.7 double 3.1 0.0
string-literal 8.0 0.4 ^ 3.1 0.0
void 18.2 0.4 union 6.2 0.0
&& 17.8 0.2

Usage

A study by Bodík, Gupta, and Soffa[19] found that 13.9% of the expressions in SPEC95 were partially
redundant, that is, their evaluation is not necessary under some conditions.

partial re-
dundancy

elimination

See Table 1713.1 for information on occurrences of full expressions, and Table 770.2 for visual spacingfull ex-
pression

1712

between binary operators and their operands.

v 1.1 January 30, 2008



CHANGES 940

Table 940.2: Occurrence of a token as the first token on a physical line (as a percentage of all occurrences of that token and as a
percentage of all lines). /* new-line */ denotes a comment containing one or more new-line characters, while /* ... */ denotes that
form of comment on a single line. Based on the visible form of the .c files.

Token % First Token
on Line

% Occurrence
of Token

Token % First Token
on Line

% Occurrence
of Token

default 0.2 99.9 volatile 0.0 50.0
# 5.0 99.9 int 1.8 47.0
typedef 0.1 99.8 unsigned 0.7 46.8
static 2.1 99.8 struct 1.1 38.9
for 0.8 99.7 const 0.1 35.5
extern 0.2 99.6 char 0.5 30.5
switch 0.3 99.4 void 0.6 28.7
case 1.6 97.8 *v 0.5 28.7
\* new-line *\ 13.7 97.7 ++v 0.0 27.8
register 0.2 95.0 signed 0.0 27.2
return 3.3 94.5 && 0.3 21.2
goto 0.4 94.1 identifier 31.1 20.8
if 6.9 93.6 || 0.2 18.4
break 1.2 91.8 --v 0.0 17.9
continue 0.2 91.3 short 0.0 16.0
} 8.3 88.3 #error 0.0 15.6
do 0.1 87.3 string-literal 0.6 12.4
while 0.4 85.2 sizeof 0.1 11.3
enum 0.1 73.7 long 0.1 10.1
\\ 0.6 70.8 integer-constant 2.2 6.6
else 1.1 70.2 ? 0.0 5.6
union 0.0 63.3 &v 0.1 5.2
\* ... *\ 5.4 62.6 -v 0.1 5.0
{ 5.1 54.9 ?: 0.0 5.0
float 0.0 54.0 | 0.0 4.2
double 0.0 53.6 floating-constant 0.0 4.1

Table 940.3: Breakdown of invariance by instruction types. These categories include integer loads (ILd), floating-point loads
(FLd), load address calculations (LdA), stores (St), integer multiplication (IMul), floating-point multiplication (FMul), floating-
point division (FDiv), all other integer arithmetic (IArth), all other floating-point arithmetic (FArith), compare (Cmp), shift (Shft),
conditional moves (CMov), and all other floating-point operations (FOps). The first number shown is the percent invariance of the
topmost value for a class type, while the number in parenthesis is the dynamic execution frequency of that type. Results are not
shown for instruction types that do not write a register (e.g., branches). Adapted from Calder, Feller, and Eustace.[25]

Program ILd FLd LdA St IMul FMul FDiv IArth FArth Cmp Shft CMov FOps

compress 44(27) 0(0) 88( 2) 16( 9) 15(0) 0(0) 0(0) 11(36) 0(0) 92(2) 14( 9) 0(0) 0(0)
gcc 46(24) 83(0) 59( 9) 48(11) 40(0) 30(0) 31(0) 46(28) 0(0) 87(3) 54( 7) 51(1) 95(0)
go 36(30) 100(0) 71(13) 35( 8) 18(0) 100(0) 0(0) 29(31) 0(0) 73(4) 42( 0) 52(1) 100(0)
ijpeg 19(18) 73(0) 9(11) 20( 5) 10(1) 68(0) 0(0) 15(37) 0(0) 96(2) 17(21) 15(0) 98(0)
li 40(30) 100(0) 27( 8) 42(15) 30(0) 13(0) 0(0) 56(22) 0(0) 93(2) 79( 3) 60(0) 100(0)
perl 70(24) 54(3) 81( 7) 59(15) 2(0) 50(0) 19(0) 65(22) 34(0) 87(4) 69( 6) 28(1) 51(1)
m88ksim 76(22) 59(0) 68( 8) 79(11) 33(0) 53(0) 66(0) 64(28) 100(0) 91(5) 66( 6) 65(0) 100(0)
vortex 61(29) 99(0) 46( 6) 65(14) 9(0) 4(0) 0(0) 70(31) 0(0) 98(2) 40( 3) 20(0) 100(0)

January 30, 2008 v 1.1



CHANGES976

S

NP

N

Chris

AuxP

Aux

is

VP

V

talking

PP

P

with

NP

N

Pat

S

NP

N

John-ga
’John’

AuxP

Aux

irue
’is’

VP

V

renaisite
’in love’

PP

P

to
’with’

NP

N

Mary
’Mary’

Figure 943.1: English (“Chris is talking with Pat”) and Japanese (“John-ga Mary to renaisite irue”) language phrase structure
for sentences of similar complexity and structure. While the Japanese structure may seem back-to-front to English speakers, it
appears perfectly natural to native speakers of Japanese. Adapted from Baker.[13]

=

[ ]

a i

*

x +

y z

Figure 944.1: A simplified form of the kind of tree structure that is likely to be built by a translator for the expression
a[i]=x*(y+z).

Table 940.4: Number of objects defined (in a variety of small multimedia and scientific programs) to have types represented
using a given number of bits (i.e., mostly 32-bit int) and number of objects having a maximum bit-width usage (i.e., number
of bits required to represent any of the values stored in the object; rounded up to the nearest byte boundary). Adapted from
Stephenson,[156] whose analysis was performed by static analysis of the source.

Bits Objects Defined Objects Requiring Specified Bits

1 0 203
8 7 134

16 27 108
32 686 275

943The grouping of operators and operands is indicated by the syntax.72)expression
grouping
operator
precedence

944Except as specified later (for the function-call (), &&, ||, ?:, and comma operators), the order of evaluation ofexpression
order of evalu-
ation subexpressions and the order in which side effects take place are both unspecified.

976An identifier is a primary expression, provided it has been declared as designating an object (in which case itidentifier
is primary ex-
pression if is an lvalue) or a function (in which case it is a function designator).77)

v 1.1 January 30, 2008



CHANGES 976

Usage

A study by Yang and Gupta[174] found, for the SPEC95 programs, on average eight different values occupied
48% of all allocated storage locations throughout the execution of the programs. They called this behavior
frequent value locality. The eight different values varied between programs and contained small values (zero
was often the most frequently occurring value) and very large values (often program-specific addresses of
objects and string literals).

Table 976.1: Dynamic percentage of load instructions from different classes. The Class column is a three-letter acronym: the
first letter represents the region of storage (Stack, Heap, or Global), the second denotes the kind of reference (Array, Member, or
Scalar), and the third indicates the type of the reference (Pointer or Nonpointer). For instance, HFP is a load of pointer-typed
member from a heap-allocated object. There are two kinds of loads generated as a result of internal translator housekeeping: RA is
a load of the return address from a function-call, and any register values saved to memory prior to the call also need to be reloaded
when the call returns, CS callee-saved registers The figures were obtained by instrumenting the source prior to translation. As
such they provide a count of loads that would be made by the abstract machine (apart from RA and CS). The number of loads
performed by the machine code generated by translators is likely to be optimized (evaluation of constructs moved out of loops
and register contents reused) and resulting in fewer loads. Whether these optimizations will change the distribution of loads in
different classes is not known. Adapted from Burtscher, Diwan and Hauswirth.[24]

Class compress gcc go ijpeg li m88ksim perl vortex bzip gzip mcf Mean

SSN – 1.28 3.50 0.42 4.40 12.10 6.23 7.26 0.12 0.15 0.15 2.97
SAN – 0.63 1.01 16.61 – 0.45 2.58 – 12.73 0.01 – 2.84
SMN – 0.67 – 3.62 – 0.30 – 2.60 – – – 0.60
SSP – 0.37 – 0.17 1.40 – – 0.33 – 0.02 – 0.19
SAP – 0.25 – 0.17 – – – – – – – 0.04
SMP – 0.29 – 0.25 0.01 0.24 2.15 0.05 – – – 0.25
HSN – 0.88 – 14.75 3.51 – 8.07 7.32 0.27 0.01 0.20 2.92
HAN – 7.39 – 48.55 – – 4.30 5.39 31.83 – 2.75 8.35
HMN – 16.37 – 0.76 8.80 6.11 8.42 0.85 – 3.54 27.35 6.02
HSP – 0.33 – – 1.82 – 20.01 7.64 – – – 2.48
HAP – 9.42 – 1.33 0.56 – 3.02 4.97 – – 0.88 1.68
HMP – 1.82 – 0.11 24.44 0.57 6.29 0.16 – 0.01 17.47 4.24
GSN 43.46 11.10 14.23 0.45 12.76 17.49 16.81 27.79 43.71 43.75 3.12 19.56
GAN 19.27 6.51 52.03 3.00 – 21.86 – 0.03 3.63 26.24 – 11.05
GMN – 0.81 – 0.41 – 10.96 – 0.16 – – 2.79 1.26
GSP – 0.68 – 0.04 – – – – – – 0.48 0.10
GAP – 2.17 – – – 0.86 – 0.60 0.41 – 4.72 0.73
GMP – 0.77 – 0.20 – 0.07 – – – – 0.26 0.11
RA 7.65 5.16 3.68 0.91 8.84 4.58 4.11 4.60 0.76 2.52 7.29 4.17
CS 29.62 33.10 25.55 8.27 33.46 24.40 18.01 30.24 6.54 23.75 32.55 22.12

Table 976.2: Occurrence of load instructions (as a percentage of all instructions executed on HP–was DEC– Alpha). The column
headed Leaf lists percentage of calls to leaf functions, NonLeaf is for calls to nonleaf functions. Adapted from Calder, Grunwald,
and Zorn.[27]

Program Mean Leaf NonLeaf Program Mean Leaf Non-Leaf

burg 21.7 12.9 26.7 eqntott 12.8 11.8 20.2
ditroff 30.3 18.6 32.9 espresso 21.6 20.1 22.9
tex 30.7 19.6 31.3 gcc 23.9 16.7 24.6
xfig 23.5 15.6 25.8 li 28.1 44.1 26.3
xtex 23.2 16.1 28.2 sc 21.2 15.3 22.8
compress 26.4 0.1 26.5 Mean 23.9 17.3 26.2

January 30, 2008 v 1.1



CHANGES985

Table 976.3: Comparison of percentage of load instructions executed on Alpha and MIPS. Adapted from Calder, Grunwald, and
Zorn.[27]

Program MIPS Alpha Program MIPS Alpha

compress 17.3 26.4 li 21.8 28.1
eqntott 14.6 12.8 sc 19.2 21.2
espresso 17.9 21.6 Program mean 18.2 22.3
gcc 18.7 23.9

977A constant is a primary expression.

Usage

Usage information on the distribution of all constant values occurring in the source is given elsewhere.
integer

constant
syntax

825

979A string literal is a primary expression.

Usage

Usage information on string literals is given elsewhere.string literal
syntax

895

981A parenthesized expression is a primary expression.parenthesized
expression

Usage

Usage information on parentheses usage is given elsewhere.
parenthe-
sized ex-
pression

nesting levels

281

985
postfix-expression
syntax

postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-expression-listopt )
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --
( type-name ) { initializer-list }
( type-name ) { initializer-list , }

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

v 1.1 January 30, 2008



CHANGES 988

Table 985.1: Occurrence of postfix operators having particular operand types (as a percentage of all occurrences of each operator,
with [ denoting array subscripting). Based on the translated form of this book’s benchmark programs.

Operator Type % Operator Type %

v++ int 54.0 [ unsigned char 5.1
v-- int 52.5 [ other-types 4.7
[ * 38.0 [ int 4.1

v++ * 25.7 v++ unsigned long 3.1
v-- long 15.9 v-- unsigned short 2.7
[ struct 14.5 v-- unsigned char 2.6

v++ unsigned int 13.3 [ const char 2.4
[ float 12.0 [ unsigned long 1.2

v-- unsigned int 11.5 v++ long 1.1
[ union 10.2 [ unsigned int 1.1

v-- * 7.1 v++ unsigned short 1.0
[ char 6.8 v++ unsigned char 1.0

v-- unsigned long 6.1 v-- short 1.0

Table 985.2: Common token pairs involving ., ->, ++, or -- (as a percentage of all occurrences of each token). Based on the
visible form of the .c files.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

identifier -> 9.8 97.5 v++ ) 41.4 1.4
identifier v++ 0.9 96.9 v++ ; 39.9 1.4
identifier v-- 0.1 96.1 v++ ] 4.6 1.3
identifier . 3.6 83.8 v++ = 7.6 0.7
] . 20.3 15.4 v-- ; 58.4 0.3
-> identifier 100.0 10.1 v-- ) 29.1 0.1
. identifier 100.0 4.2

988 A postfix expression followed by an expression in square brackets [] is a subscripted designation of an
element of an array object.

Time step Operation

t=1 A[0] = B[1]
t=2 C[1] = A[1]
t=3 A[1] = B[2]
t=4 C[2] = A[2]

Time step Thread 1 Thread 2

t=1 A[0] = B[1] A[1] = B[2]
t=2 C[1] = A[1] C[2] = A[2]

Time step Operation

t=1 B[1] = A[0]
t=2 A[1] = C[1]
t=3 B[2] = A[1]
t=4 A[2] = C[2]

Time step Thread 1 Thread 2

t=1 B[1] = A[0] B[2] = A[1]
t=2 A[1] = C[1] A[2] = C[2]

January 30, 2008 v 1.1



CHANGES994

Time step Operation

t=1 A[0] = B[1]
t=2 A[1] = C[1]
t=3 A[1] = B[2]
t=4 A[2] = C[2]

Time step Thread 1 Thread 2

t=1 A[0] = B[1] A[1] = B[2]
t=2 A[1] = C[1] A[2] = C[2]

991Successive subscript operators designate an element of a multidimensional array object.

Table 991.1: Occurrence of object declarations having an array type with the given number of dimensions (as a percentage of all
array types in the given scope; with local scope separated into parameters and everything else). Based on the translated form of
this book’s benchmark programs.

Dimensions Parameters Local non-parameter
Scope File Scope

1 100.0 97.9 91.9
2 0.0 2.0 7.5
3 0.0 0.1 0.6

994It follows from this that arrays are stored in row-major order (last subscript varies fastest).array
row-major stor-
age order

Figure 994.1: Row (left) and column (right) major order. The dotted line indicates successively increasing addresses for the two
kinds of storage layouts, with the gray boxes denoting the same sequence of index values.

M o n d a y \0
T u e s d a y \0
W e d n e s d a y \0
T h u r s d a y \0
F r i d a y \0
S a t u r d a y \0
S u n d a y \0

day_arr

->
->
->
->
->
->
->

day_ptr

M o n d a y \0 T u e s d a y \0 W
e d n e s d a y \0 T h u r s d a
y \0 F r i d a y \0 S a t u r d a
y \0 S u n d a y \0

Figure 994.2: Difference in storage layout between an array of array of characters (left) and array of pointer to characters (right;
not all pointers shown and the relative storage locations of the strings is only one of many that are possible).

v 1.1 January 30, 2008



CHANGES 1000

Table 994.1: Cache hit-rate for sequentially accessing, in row-major order, a two-dimensional array stored using various layout
methods. If the same array is accessed in column-major order the figures given in the Row-major and Column-major columns are
swapped and the Morton layout figure remains unchanged. These figures ignore the impact that accessing other objects might
have on cache behavior, and so denote the best hit-rate that can be achieved. Based on Thiyagalingam et al.[164]

Cache size Row-major Morton Column-major

32 byte cache line 75% 50% 0%
128 cache byte 93.75% 75% 0%
8K byte cache page 99.9% 96.875% 0%

1000 A postfix expression followed by parentheses () containing a possibly empty, comma-separated list of operator
()expressions is a function call.

Usage

How frequent are function calls? The machine code instructions used to call a function may be generated by
translators for reasons other than a function call in the source code. Some operators may be implemented via
a call to an internal system library routine; for instance, floating-point operations on processors that do not
support such operators in hardware. Such usage will vary between processors (see Figure 0.5).

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

16

20

24

28

17

21

25

29

18

22

26

30

19

23

27

31

32

36

40

44

33

37

41

45

34

38

42

46

35

39

43

47

48

52

56

60

49

53

57

61

50

54

58

62

51

55

59

63

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

0

2

1

3

4

6

5

7

8

10

9

11

12

14

13

15

16

18

17

19

20

22

21

23

24

26

25

27

28

30

29

31

32

34

33

35

36

38

37

39

40

42

41

43

44

46

45

47

48

50

49

51

52

54

53

55

56

58

57

59

60

62

61

63

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Figure 994.3: Two possible element layouts of an 8 ∗ 8 array; Blocked row-major layout (left) and Morton element layout
(right). Factors such as efficiency of array index calculation, whether array size can be made a power of two, or array shape (e.g.,
non-square) drive layout selection.[163]

function F

function G

function H
Arguments

and Return

Return address

Housekeeping

Locals

and

Temporaries

sp

fp

sp

Figure 1000.1: Common storage organization of a function call stack.

January 30, 2008 v 1.1



CHANGES1000

Table 1000.1: Static count of number of calls: to functions defined within the same source file as the call, not defined in the file
containing the call, and made via pointers-to functions. Parenthesized numbers are the corresponding dynamic count. Adapted
from Chang, Mahlke, Chen, and Hwu.[36]

Name Within File Not in File Via Pointer

cccp 191 ( 1,414) 4 ( 3) 1 ( 140)
compress 27 ( 4,283) 0 ( 0) 0 ( 0)
eqn 81 ( 6,959) 144 ( 33,534) 0 ( 0)
espresso 167 ( 55,696) 982 ( 925,710) 11 ( 60,965)
lex 110 ( 63,240) 234 ( 4,675) 0 ( 0)
tbl 91 ( 9,616) 364 ( 37,809) 0 ( 0)
xlist 331 (10,308,201) 834 (8,453,735) 4 (479,473)
yacc 118 ( 34,146) 81 ( 3,323) 0 ( 0)

Table 1000.2: Percentage of function invocations during execution of various programs in SPECint92. The column headed Leaf
lists percentage of calls to leaf functions, NonLeaf calls to nonleaf functions (the issues surrounding this distinction are discussed
elsewhere). The column headed Direct lists percentages of calls where a function name appeared in the expression, Indirect is
where the function address was obtained via expression evaluation. Adapted from Calder, Grunwald, and Zorn.[27]

Program Leaf Non-Leaf Indirect Direct Program Leaf NonLeaf Indirect Direct

burg 72.3 27.7 0.1 99.9 eqntott 85.3 14.7 68.7 31.3
ditroff 14.7 85.3 1.0 99.0 espresso 75.0 25.0 4.0 96.0
tex 20.0 80.0 0.0 100.0 gcc 28.9 71.1 5.4 94.6
xfig 35.5 64.5 6.2 93.8 li 13.4 86.6 2.9 97.1
xtex 50.6 49.4 3.0 97.0 sc 29.1 70.9 0.1 99.9
compress 0.1 99.9 0.0 100.0 Mean 38.6 61.4 8.3 91.7

Table 1000.3: Count of instructions executed and function calls made during execution of various SPECint92 programs on an
Alpha AXP21064 processor. Function calls invoked includes indirect function calls; Instructions/Call is the number of instructions
executed per call; Total I-calls is the number of indirect function calls made; and Instructions/I-call is the number of instructions
executed per indirect call. Adapted from Calder, Grunwald, and Zorn.[27]

Program Name Instructions Executed Function Calls Invoked Instructions/Call Total I-calls Instructions/I-call

burg 390,772,349 6,342,378 61.6 8,753 44,644.4
ditroff 38,893,571 663,454 58.6 6,920 5,620.5
tex 147,811,789 853,193 173.2 0 –
xfig 33,203,506 536,004 61.9 33,312 996.7
xtex 23,797,633 207,047 114.9 6,227 3,821.7
compress 92,629,716 251,423 368.4 0 –
eqntott 1,810,540,472 4,680,514 386.8 3,215,048 563.1
espresso 513,008,232 2,094,635 244.9 84,751 6,053.1
gcc 143,737,904 1,490,292 96.4 80,809 1,778.7
li 1,354,926,022 31,857,867 42.5 919,965 1,472.8
sc 917,754,841 12,903,351 71.1 13,785 66,576.3
dhrystone 608,057,060 18,000,726 33.8 0 –
Program mean 497,006,912 5,625,468 152.8 397,233 14,614.1

v 1.1 January 30, 2008



CHANGES 1005

Table 1000.4: Mean and standard deviation of call stack depth during execution of various programs in SPECint92. Adapted
from Calder, Grunwald, and Zorn.[27]

Program Mean Std. Dev. Program Mean Std. Dev.

burg 10.5 30.84 eqntott 6.5 1.39
ditroff 7.1 2.45 espresso 11.5 4.67
tex 7.9 2.71 gcc 9.9 2.44
xfig 11.6 4.47 li 42.0 14.50
xtex 14.2 4.27 sc 6.8 1.41
compress 4.0 0.07 Mean 12.0 6.29

1001 The postfix expression denotes the called function.

Table 1001.1: Static count of functions defined, library functions called, direct and indirect calls to them and number of functions
that had their addresses taken in SPECint95. Adapted from Cheng.[37]

Benchmark Lines Code Functions Defined Library Functions Direct Calls Indirect Calls & Function

008.espresso 14,838 361 24 2,674 15 12
023.eqntott 12,053 62 21 358 11 5
072.sc 8,639 179 53 1,459 2 20
085.cc1 90,857 1,452 44 8,332 67 588
124.m88ksim 19,092 252 36 1,496 3 57
126.gcc 205,583 2,019 45 19,731 132 229
130.li 7,597 357 27 1,267 4 190
132.ijpeg 29,290 477 18 1,016 641 188
134.perl 26,874 276 72 4,367 3 3
147.vortex 67,205 923 33 8,521 15 44

1002 The list of expressions specifies the arguments to the function.

Usage
Usage information on the number of arguments in calls to functions is given elsewhere. 289 function call

number of argu-
ments

1003 An argument may be an expression of any object type.

Usage
Information on parameter types is given elsewhere (see Table 1831.1).

Table 1003.1: Occurrence of various argument types in calls to functions (as a percentage of argument types in all calls). Based
on the translated form of this book’s benchmark programs.

Type % Type %

struct * 26.8 void * 4.0
int 16.5 union * 3.4
const char * 9.7 unsigned char 2.5
char * 8.4 enum 2.1
other-types 8.0 unsigned short 1.9
unsigned int 7.1 const void * 1.8
unsigned long 6.3 long 1.4

1004 In preparing for the call to a function, the arguments are evaluated, and each parameter is assigned the value function call
preparing forof the corresponding argument.79)

January 30, 2008 v 1.1



CHANGES1015

r0

r7
r8

r15
r16

r23
r24

r31
r32

r39
r40

r45
r48

r55
r56

r63
r64

r71
r72

r79

Globals

In

Locals

Out

Globals

In

Locals

Out

1st call

R0

R7

R8

R15
R16

R23
R24

R31

Globals

In

Locals

Out

2nd call

Globals

In

Locals

Out

3rd call

Figure 1004.1: A processor’s register file (on the left) and a mapping to register windows for registers accessible to a program,
after 0, 1, 2, and 3 call instructions have been executed. The mapping of the first eight registers is not affected by the call
instruction.

1005If the expression that denotes the called function has type pointer to function returning an object type, the
function call expression has the same type as that object type, and has the value determined as specified in
6.8.6.4.

Table 1005.1: Occurrence of various return types in calls to functions (as a percentage of the return types of all function calls).
Based on the translated form of this book’s benchmark programs.

Type % Type %

void 35.8 union * 3.2
int 30.5 unsigned long 3.1
struct * 9.1 char * 3.1
void * 6.3 unsigned int 2.1
other-types 5.2 char 1.6

1011If the function is defined with a type that includes a prototype, and either the prototype ends with an ellipsis (,function definition
ends with ellipsis

...) or the types of the arguments after promotion are not compatible with the types of the parameters, the
behavior is undefined.

101378) Most often, this is the result of converting an identifier that is a function designator.footnote
78

Usage

In most programs an identifier is converted in more than 99% of cases, although a lower percentage is
occasionally seen (see Table 1001.1).

1015On the other hand, it is possible to pass a pointer to an object, and the function may change the value of the
object pointed to.

v 1.1 January 30, 2008



CHANGES 1076

x
fp

y

z

x

y

z

Figure 1011.1: An example of the impact, on relative stack addresses, of passing an argument having a type that occupies more
storage than the declared parameter type. For instance, the offset of z, relative to the frame pointer fp, might be changed by
passing an argument having a type different from the declared type of the parameter y (this can occur when there is no visible
prototype at the point of call to cause the type of the argument to be converted).

Usage
Pointer types are the most commonly occurring kind of parameter type (see Table 1831.1).

1031 A postfix expression followed by the . operator and an identifier designates a member of a structure or union member
selectionobject.

Table 1031.1: Number of member selection operators of the same object (number of dot selections is indicated down the left,
and the number of indirect selections across the top). For instance, x.m1->m2 is counted as one occurrence of the dot selection
operator with one instance of the indirect selection operator. Based on the translated form of this book’s benchmark programs.

. \ -> 0 1 2 3 4 5

0 0 165,745 10,396 522 36 4
1 28,160 34,065 3,437 230 7 0
2 3,252 6,643 579 26 0 0
3 363 309 35 5 0 0
4 16 33 2 0 0 0
5 0 15 0 0 0 0

1037 One special guarantee is made in order to simplify the use of unions: if a union contains several structures union
special guaranteethat share a common initial sequence (see below), and if the union object currently contains one of these

structures, it is permitted to inspect the common initial part of any of them anywhere that a declaration of the
complete type of the union is visible.

Usage
Measurements by Stiff et al.[159] of 1.36 MLOC (the SPEC95 benchmarks, gcc, binutils, production code
from a Lucent Technologies’ product and a few other programs) showed a total of 23,947 casts involving
2,020 unique types. For the void *⇔ struct * conversion, they found 2,753 upcasts (610 unique types),
2,788 downcasts (606 unique types), and 538 cases (60 unique types) where there was no matching between
the associated up/down casts. For the struct * ⇔ struct * conversions, they found 688 upcasts (78
unique types), 514 downcasts (66 unique types), and 515 cases (67 unique types) where there was no
relationship associated with the types.

1053 Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

Usage
No usage information is provided on compound literals because very little existing source code contains any
use of them.

January 30, 2008 v 1.1



CHANGES1080

1076EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory andEXAMPLE
string literals
shared can even be shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

Usage

In the visible source of the .c files 0.1% of string literals appeared as the operand of the equality operator
(representing 0.3% of the occurrences of this operator).

1080
unary-expression
syntax

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )

unary-operator: one of
& * + - ~ !

Usage

See the Usage section of postfix-expression for ++ and -- digraph percentages.
postfix-

expression
syntax

985

Table 1080.1: Common token pairs involving sizeof, unary-operator, prefix ++, or prefix -- (as a percentage of all
occurrences of each token). Based on the visible form of the .c files.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

! defined 2.0 16.7 ! ( 14.5 0.5
*v --v 0.3 7.8 -v identifier 30.2 0.4
-v floating-constant 0.3 6.7 *v ( 9.0 0.4
*v ++v 0.5 6.3 ~ integer-constant 20.1 0.2
! --v 0.2 4.8 ++v identifier 97.3 0.1
-v integer-constant 69.0 4.1 ~ identifier 56.3 0.1
&v identifier 96.1 1.9 ~ ( 23.4 0.1
sizeof ( 97.5 1.8 +v integer-constant 49.0 0.0
*v identifier 86.8 1.0 --v identifier 97.1 0.0
! identifier 81.9 0.8

v 1.1 January 30, 2008



CHANGES 1103

Numeric value

O
cc

ur
re

nc
es

0 1632 64 100 128150 200 255

1

10

100

1,000

10,000

100,000 unary-
× decimal-constant
• hexadecimal-constant

×

×

•

×
×××
××

•

×

•

×
×
×
××
×
×

•

×

•

×

×

×××

•

×

•

×

•

×

•

×
×
××
×××

×

•

×
×

•

×
×
×
×
×

×

×

×

××

×
××

×
×××
×

×
×
×

××

×
×

×

××

×

×

×××
×
×

×

×

×
×
×
××
×

×

×

×
×
×××
×
××

×

××
×
×
××

×

×

×
×

×

×
××
×

×
×

×

×
××
××

×

×

×
×
×

×

×
×××

×

××
×

•

×

•×

×

×

××××

×
×××

×

×
×
×

×

××××
×

×
×

×
××

×

×

××
×

×

×

×
×
××××
××

×
××

×

×
×

×
×

×

×
××

×
×××××××

×

×

××

×

×××

×

×

×
×

××
×
×
×

×
××
×
××
×
×

×
×
×
×
×
×
×××
×
××
×
×
×
××
×
×
×
×

××

×
•

×

Numeric value

0 1632 64 100 128150 200 255

unary˜

×

•

×
•×
•

×

•
×•

××•

×

•
×•

•
•
•

×
•

×•
•

•••

•

•×

×
•

×

•

•
•
•

•

••

•
•×
•

×

•

•
×
••
•
•

•

•

•

•• •

×

•
×

•

•
•
• •

×

•
•
•

•

•

•
•

••

•

•

•

••×

•
•

Figure 1080.1: Number of integer-constants having a given value appearing as the operand of the unary minus and unary ~
operators. Based on the visible form of the .c files.

Table 1080.2: Occurrence of the unary-operators, prefix ++, and prefix -- having particular operand types (as a percentage of
all occurrences of the particular operator; an _ prefix indicates a literal operand). Based on the translated form of this book’s
benchmark programs.

Operator Type % Operator Type % Operator Type %

-v _int 96.0 ~ unsigned long 6.8 ! _long 2.7
*v ptr-to 95.3 &v int 6.2 ~ unsigned char 2.5
+v _int 72.2 ~ unsigned int 6.0 &v unsigned char 2.4
--v int 54.7 +v unsigned long 5.6 ! unsigned long 2.1
! int 50.0 +v long 5.6 ~ long 2.0
~ _int 49.3 +v float 5.6 ++v unsigned char 1.9
&v other-types 45.1 ! other-types 5.6 ~ _unsigned long 1.7
++v int 43.8 ++v unsigned long 5.2 ~ _unsigned int 1.7
++v ptr-to 33.3 &v struct * 4.9 ! unsigned char 1.6
~ int 28.5 --v unsigned long 4.7 ~ other-types 1.6

--v unsigned int 22.1 ! unsigned int 4.7 -v _double 1.4
! ptr-to 20.1 *v fnptr-to 4.1 -v other-types 1.3

--v ptr-to 14.6 &v unsigned long 4.0 ++v long 1.2
&v struct 13.9 --v other-types 4.0 -v int 1.2
&v char 13.1 &v long 3.4 ! _int 1.2
++v unsigned int 12.6 &v unsigned int 3.0 ++v unsigned short 1.1
+v int 11.1 &v unsigned short 2.9 &v char * 1.1
! char 9.2 ! enum 2.9

1095 The unary * operator denotes indirection. unary *
indirection

Usage

A study by Mock, Das, Chambers, and Eggers[124] looked at how many different objects the same pointer
dereference referred to during program execution (10 programs from the SPEC95 and SPEC2000 benchmarks SPEC

benchmarks

were used). They found that in 90% to 100% of cases (average 98%) the set of objects pointed at, by a
particular pointer dereference, contained one item. They also performed a static analysis of the source using
a variety of algorithms for deducing points-to sets. On average (geometric mean) the static points to sets
were 3.3 larger than the dynamic points to sets.

1103 of the ! operator, scalar type. !
operand type

January 30, 2008 v 1.1



CHANGES1134

Table 1103.1: Occurrence of the unary ! operator in various contexts (as a percentage of all occurrences of this operator and the
percentage of all occurrences of the given context that contains this operator). Based on the visible form of the .c files.

Context % of ! % of Contexts

if control-expression 91.0 17.4
while control-expression 2.3 8.2
for control-expression 0.3 0.7
switch control-expression 0.0 0.0
other contexts 6.4 —

1113The expression !E is equivalent to (0==E).!
equivalent to

Usage

The visible form of the .c files contain 95,024 instances of the operator ! (see Table 912.2 for information
on punctuation frequencies) and 27,008 instances of the token sequence == 0 (plus 309 instances of the form
== 0x0). Integer constants appearing as the operand of a binary operator occur 28 times more often as the
right operand than as the left operand.

1118The sizeof operator shall not be applied to an expression that has function type or an incomplete type, to thesizeof
constraints parenthesized name of such a type, or to an expression that designates a bit-field member.

Table 1118.1: Occurrence of the sizeof operator having particular operand types (as a percentage of all occurrences of this
operator). Based on the translated form of this book’s benchmark programs.

Type % Type %

struct 48.2 unsigned short 2.7
[ ] 12.2 struct * 2.6
int 11.6 char 2.0
other-types 4.7 unsigned char 1.5
long 3.8 char * 1.5
unsigned int 3.6 signed int 1.2
unsigned long 3.4 union 1.1

1133
cast-expression
syntax

cast-expression:
unary-expression
( type-name ) cast-expression

Usage

Measurements by Stiff, Chandra, Ball, Kunchithapadam, and Reps[159] of 1.36 MLOC (SPEC95 version of
gcc, binutils, production code from a Lucent Technologies product and a few other programs) showed a total
of 23,947 casts involving 2,020 unique types. Of these 15,704 involved scalar types (not involving a structure,
union, or function pointer) and 447 function pointer types. Of the remaining casts 7,796 (1,276 unique types)
involved conversions between pointers to void/char and pointers to structure (in either direction) and 1,053
(209 unique types) conversions between pointers to structs.

1134Unless the type name specifies a void type, the type name shall specify qualified or unqualified scalar typecast
scalar or void
type and the operand shall have scalar type.

v 1.1 January 30, 2008



CHANGES 1143

Usage
Usage information on implicit conversions is given elsewhere (see Table 653.1).

Table 1134.1: Occurrence of the cast operator having particular operand types (as a percentage of all occurrences of this operator).
Based on the translated form of this book’s benchmark programs.

To Type From Type % To Type From Type %

( other-types ) other-types 40.1 ( char * ) const char * 1.6
( void * ) _ int 18.9 ( union * ) void * 1.5
( struct * ) struct * 11.2 ( void ) long 1.3
( struct * ) _ int 4.2 ( unsigned long ) unsigned long 1.3
( char * ) char * 4.0 ( int ) int 1.3
( char * ) struct * 3.9 ( unsigned int ) int 1.2
( struct * ) void * 2.8 ( enum ) int:8 24 1.2
( unsigned char ) int 1.7 ( char ) _ int 1.2
( struct * ) char * 1.7 ( unsigned long ) ptr-to * 1.0

1143
multiplicative-

expression
syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Table 1143.1: Percentage breakdown of errors in answers to multiplication problems. Figures are mean values for 60 adults
tested on 2×2 to 9×9 from Campbell and Graham,[29] and 42 adults tested on 0×0 to 9×9 from Harley.[77] For the Campbell
and Graham data, the operand error and operation error percentages are an approximation due to incomplete data.

Campbell and Graham Harley

Operand errors 79.1 86.2
Close operand errors 76.8 76.74
Frequent product errors 24.2 23.26
Table errors 13.5 13.8
Operation error 1.7 13.72
Error frequency 7.65 6.3

Operand family value

Pe
rc

en
ta

ge
 e

rr
or

5

15

25

2 4 6 8

division• •
multiplication• •

•

• •

•

• •

•
•

•
•

•

•

• • •

•

Figure 1143.1: Mean percentage of errors in simple multiplication (e.g., 3×7) and division (e.g., 81/9) problems as a function
of the operand value (see paper for a discussion of the effect of the relative position of the minimum/maximum operand values).
Adapted from Campbell.[28]

January 30, 2008 v 1.1



CHANGES1144

Table 1143.2: Common token pairs involving multiplicative operators (as a percentage of all occurrences of each token). Based
on the visible form of the .c files. Note: a consequence of the method used to perform the counts is that occurrences of the
sequence identifier * are over estimated (e.g., occurrences of a typedef name followed by a * are included in the counts).

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

identifier * 3.4 92.1 / sizeof 9.0 3.6
identifier % 0.0 57.7 * identifier 76.5 2.8
identifier / 0.1 54.3 * ) 14.4 2.0
) / 0.3 33.9 floating-constant / 5.8 1.8
) % 0.1 31.8 / integer-constant 53.5 0.5
* floating-constant 0.2 12.5 % integer-constant 44.8 0.1
* sizeof 1.6 11.2 / identifier 27.5 0.1
integer-constant / 0.1 8.5 floating-constant * 6.8 0.1
, % 0.0 6.5 / ( 7.9 0.1
/ floating-constant 2.0 6.4 % identifier 47.6 0.0
* *v 1.4 4.4

1144
Each of the operands shall have arithmetic type.multiplicative

operand type

Numeric value

O
cc

ur
re

nc
es

0 1632 64 100 128150 200 255

1

10

100

1,000

binary*
× decimal notation
• hexadecimal notation

××

×

•

×
×

•

×

•

×
×

×

•

×

×

×

×

•

×
×

×

×

•
×
•×•
×•

×

•

×

×

×

××

×

×

•
×

×
×

×

•

×
×

×
×

×

×

×

××
×

×

××

×
×

×

×

•

×

•

×

×
××

×

•

×

×
×

××

×•
×

×

•××

×

×××××•

×

×
×

×

•
•

×

× ×

×
×

••

×

×
××××

×

×

××

×

×
×
× ××

×

•

×

•

Numeric value

0 1632 64 100 128150 200 255

binary/

×

×

×

×

×

×
×
×

×

×

×

×

××
××

×

•××

×

×

×
×

×
×
×

××

×

×

××

×

•

×

×

××

×

×
×
×
×

×

×

×

×

×

×

×
×

×•

×

×

×

× ×

××

×

× •

×× ××
××

× ××

×

×

×

•

×

•

Figure 1143.2: Number of integer-constants having a given value appearing as the right operand of the multiplicative
operators. Based on the visible form of the .c files.

v 1.1 January 30, 2008



CHANGES 1153

Table 1144.1: Occurrence of multiplicative operators having particular operand types (as a percentage of all occurrences of each
operator; an _ prefix indicates a literal operand). Based on the translated form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

int % _int 40.6 _unsigned long * _int 2.8
int / _int 25.6 int / float 2.7
other-types * other-types 18.1 long / _int 2.5
other-types / other-types 16.2 unsigned long % int 2.3
_int * _int 13.4 _int * unsigned short 2.2
unsigned int % _int 12.6 _int * _unsigned long 2.2
int % int 12.2 _unsigned long * int 2.1
int * _int 12.1 unsigned long * _unsigned long 1.9
_int / _int 11.0 int % unsigned int 1.8
_unsigned long / _unsigned long 9.9 float / float 1.8
_unsigned long * unsigned char 9.5 _unsigned long / _int 1.6
int * _unsigned long 8.8 unsigned int % int 1.6
float * float 8.8 unsigned long % unsigned long 1.5
other-types % other-types 7.3 unsigned short / _int 1.3
unsigned long / _int 6.6 unsigned long / unsigned long 1.3
_int * int 6.5 unsigned int * _int 1.3
int * int 5.9 unsigned int * _unsigned long 1.2
unsigned long / _unsigned long 5.8 int / _unsigned long 1.2
unsigned int / _int 5.3 _double / _double 1.2
int / int 5.0 float * _int 1.1
unsigned int % unsigned int 4.2 unsigned long * _int 1.0
int % unsigned long 4.2 unsigned int % unsigned long 1.0
int % _unsigned long 3.9 int / unsigned long 1.0
long % _int 3.7 _int * unsigned int 1.0
unsigned long % _int 3.1

1147 The result of the binary * operator is the product of the operands. binary *
result

Usage

Measurements by Citron, Feitelson, and Rudolph[39] found that in a high percentage of cases the operands
of multiplication operations repeat themselves (59% for integer operands and 43% for floating-point).
Measurements were based on maintaining previous results in a 32-entry, 4-way associative, cache.

1148 The result of the / operator is the quotient from the division of the first operand by the second; binary /
result

Usage

Measurements by Oberman[131] found that in a high percentage of cases division operations on floating-point
operands repeat themselves (i.e., the same numerator and denominator values). The measurements were
done using the SPECfp92 and NAS (Fortran-based) benchmarks.[12] Simulations using an infinite division SPEC

benchmarks

operand cache found a hit rate (i.e., cache lookup could return the result of the division) of 69.8%, while
a cache containing 128 entries had a hit rate of 60.9%. A more detailed analysis by Citron, Feitelson, and
Rudolph[39] found a great deal of variability over different applications, with multimedia applications having
hit rates of 50% (using a 32 entry, 4-way associative cache).

1153
additive-

expression
syntax

additive operatorsadditive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

January 30, 2008 v 1.1



CHANGES1159

Table 1153.1: Common token pairs involving additive operators (as a percentage of all occurrences of each token). Based on the
visible form of the .c files.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

identifier + 1.0 77.5 + sizeof 1.5 3.8
identifier - 0.5 75.7 + integer-constant 33.7 1.9
) - 0.3 14.7 - integer-constant 44.0 1.3
) + 0.6 12.9 + identifier 55.4 0.7
+ floating-constant 0.4 7.7 + ( 8.3 0.4
integer-constant + 0.4 6.3 - identifier 46.1 0.3
integer-constant - 0.2 5.8 - ( 6.2 0.1

1154For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to an objectaddition
operand types type and the other shall have integer type.

Table 1154.1: Occurrence of additive operators having particular operand types (as a percentage of all occurrences of each
operator; an _ prefix indicates a literal operand). Based on the translated form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

int + _int 37.5 unsigned long + _int 2.6
int - _int 19.5 unsigned long - unsigned long 2.4
other-types + other-types 16.2 unsigned int - unsigned int 2.2
other-types - other-types 16.0 long - _int 2.2
_int + _int 11.8 _int - int 2.1
int - int 10.8 ptr-to - _int 2.0
_int - _int 8.8 long - long 2.0
ptr-to - ptr-to 6.4 unsigned int + _int 1.7
ptr-to + unsigned long 6.2 float + float 1.7
ptr-to + long 5.8 unsigned short - int 1.5
float - float 5.0 unsigned long + unsigned long 1.4
unsigned long - _int 4.9 int - unsigned short 1.4
int + int 4.7 _int + int 1.4
unsigned int - _int 4.2 unsigned short + _int 1.2
ptr-to + int 3.7 unsigned short - _int 1.1
_unsigned long - _int 3.1 unsigned char - _int 1.1
ptr-to - unsigned long 3.1 unsigned int + unsigned int 1.0
ptr-to + _int 3.0

Numeric value

O
cc

ur
re

nc
es

0 1632 64 100 128150 200 255

1

10

100

1,000

10,000

binary+
× decimal notation
• hexadecimal notation

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•
×

•

×

•×
•
×
•

×

•

×

•

×
•

×

•
×

•

×

•
×

•

×
•
×

•

×•
×

•

×
•×•

×
•
×
•

×

•

×

•

×

•

×
•
×•×
×•
×

×

•
×

•

×
•

×

×
•
×
×

•

×

•
×•

×

•

×
•

×•

×

•
•
×

•

•

×•
×•

×

•

•×

•

×•

×
•
×
×
•

×

•

×•

×••×•×
•

×•

×
×
•
×

×
•

×
•

•
×
×
•

•
•

•
×

•
×•

×

•

×•
×•
•×

•

•
×

•
×•

×

•

×

×

•

××

•×
×
•

•×
•
×
•
×•

×•

×
×••

×

×

•••

•

×

•
×•

×

•

×•

×

×
•
•××•×•×•

×

•

×××•×
•
××
•

•

••

•

•

•
•

×

•

×
•

•

×
×

•

••••

×

•

•

•

×

•

×•
•
×

•

•
••

•

•
•

•

•××
×
•×

×
•

Numeric value

0 1632 64 100 128150 200 255

binary-

×

×

×

•

××

•

×

•

××

×

•

×
×

•

×
×

•

×

×

•
×

•

×

•

×××
•

×

×

•

××

×

•

××

×××

×
×
•

×

•
×

•

×

•

×

×

×

××

×

××

×
•

×

•×

×
×

×
×
×

×
×

×

×

×

•
×

•
×

×

×
××

×•

×

×
×

×

×××•×
•
×•×

×

×××

×
×

•

××

×

×

×
•

×•

×
•

××
×××

×
××

•

×
×
×

•

×

•• ×
×

× ×

×

×

×××× ×•

×•

×•×

×

Figure 1153.1: Number of integer-constants having a given value appearing as the right operand of additive operators. Based
on the visible form of the .c files.

v 1.1 January 30, 2008



CHANGES 1181

1159 — both operands are pointers to qualified or unqualified versions of compatible object types; or subtraction
pointer operands

Table 1159.1: Occurrence of operands of the subtraction operator having a pointer type (as a percentage of all occurrences of this
operator with operands having a pointer type). Based on the translated form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

char * - char * 48.9 void * - void * 1.4
unsigned char * - unsigned char * 26.2 int * - int * 1.4
struct * - struct * 13.7 unsigned short * - unsigned short * 1.2
const char * - const char * 4.6 other-types - other-types 0.0

1160 — the left operand is a pointer to an object type and the right operand has integer type.

Table 1160.1: Occurrence of additive operators one of whose operands has a pointer type (as a percentage of all occurrences of
each operator with one operand having a pointer type). Based on the translated form of this book’s benchmark programs. Note: in
the translator used the result of the sizeof operator had type unsigned long.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

char * - unsigned long 46.0 unsigned char * - int 1.7
char * + unsigned long 27.3 const char * - _ int 1.7
char * + long 26.8 short * - _ int 1.6
other-types + other-types 10.6 char * + unsigned char 1.6
char * - _ int 9.5 char * - int 1.6
struct * - array-index 9.1 char * - array-index 1.4
unsigned char * - _ int 8.8 unsigned char * + unsigned int 1.3
unsigned char * + _ int 7.4 unsigned char * - array-index 1.3
char * + int 6.6 void * - _ int 1.2
unsigned char * + int 5.7 char * + signed int 1.2
struct * - _ int 4.7 unsigned long * + int 1.1
char * + _ int 3.6 struct * + _ int 1.1
unsigned char * - _ unsigned long 2.1 unsigned char * + unsigned short 1.0
char * + unsigned int 1.9 char * + unsigned short 1.0
struct * + int 1.8 other-types - other-types 0.0

1163 The result of the binary + operator is the sum of the operands.

Table 1163.1: Mean square error in the result of summing, using five different algorithms, N values having a uniform or
exponential distribution; where µ is the mean of the N values and σ2 is the mean square error that occurs when two numbers are
added.

Distribution Increasing Order Random Order Decreasing Order Insertion Adjacency

Uniform (0, 2µ) 0.2µ2N3σ2 0.33µ2N3σ2 0.53µ2N3σ2 2.6µ2N2σ2 2.7µ2N2σ2

Exponential (µ) 0.13µ2N3σ2 0.33µ2N3σ2 0.63µ2N3σ2 2.63µ2N2σ2 4.0µ2N2σ2

Usage
A study by Sweeney[161] dynamically analyzed the floating-point operands of the addition operator. In 26%
of cases the values of the two operands were within a factor of 2 of each other, in 13% of cases within a
factor of 4, and in 84% of cases within a factor of 1,024.

1181
shift-expression

syntax

shift-expression:

January 30, 2008 v 1.1



CHANGES1182

additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Table 1181.1: Common token pairs involving the shift operators (as a percentage of all occurrences of each token). Based on the
visible form of the .c files.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

identifier >> 0.1 63.9 ] << 0.5 5.3
identifier << 0.1 37.3 << integer-constant 63.4 0.8
integer-constant << 0.5 36.1 >> integer-constant 79.8 0.7
) >> 0.2 28.0 << identifier 28.4 0.1
) << 0.2 20.3 << ( 8.1 0.1
] >> 0.4 6.2 >> identifier 15.9 0.0

1182Each of the operands shall have integer type.

Numeric value

O
cc

ur
re

nc
es

024 8 16 24 32 48 64

1

10

100

1,000

binary <<
× decimal notation
• hexadecimal notation

×

×
××××××

×

•

××

•

××

•

×

•

×

•

×

×

•

×××

××
××

×

×××
××××

×

×
××

×
×
×

••

×

•×•×
×
×
•
×
•×
×

×

×
×

××
×

×

×

×××

×

Numeric value

024 8 16 24 32 48 64

binary >>

×

×
×××

××
×

×

•

××

•

×
×

•

×××

×

××

•

×

××

××

×

××

•

×

×

•

×
××

×

×

××
×

×

×
×

×
×
×

×

×

××
×

×
××

×

×

Figure 1181.1: Number of integer-constants having a given value appearing as the right operand of the shift operators. Based
on the visible form of the .c files.

v 1.1 January 30, 2008



CHANGES 1197

Table 1182.1: Occurrence of shift operators having particular operand types (as a percentage of all occurrences of each operator;
an _ prefix indicates a literal operand). Based on the translated form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

int >> _int 29.4 unsigned char << _int 2.8
_int << _int 27.1 _long << _long 2.8
unsigned int >> _int 26.1 unsigned int >> int 2.6
_long << _int 11.9 _int >> _int 2.5
int << _int 11.8 int >> int 2.1
unsigned long >> _int 11.3 long >> _int 2.0
_int << int 7.3 unsigned long >> int 1.8
unsigned short >> _int 7.0 unsigned long << _int 1.8
other-types >> other-types 6.9 long >> int 1.7
int << int 6.0 _unsigned long << int 1.3
other-types << other-types 5.8 unsigned int >> unsigned int 1.2
unsigned int << int 5.3 signed long >> _int 1.2
_unsigned long << _int 4.9 unsigned short << _int 1.1
unsigned int << _int 4.2 long << _int 1.1
unsigned char >> _int 4.0 int << unsigned long 1.1
unsigned long << int 3.8

1197
relational op-

erators
syntax

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Table 1197.1: Common token pairs involving relational operators (as a percentage of all occurrences of each token). Based on
the visible form of the .c files.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

identifier < 0.7 87.9 >= character-constant 3.6 1.5
identifier >= 0.2 85.9 < integer-constant 40.0 1.3
identifier > 0.3 85.0 > integer-constant 53.2 0.9
identifier <= 0.1 84.8 >= integer-constant 41.2 0.4
) <= 0.1 10.4 < identifier 53.9 0.4
) >= 0.1 10.1 <= integer-constant 41.0 0.2
) < 0.3 9.9 > identifier 40.1 0.2
) > 0.1 9.6 >= identifier 50.0 0.1
<= character-constant 7.1 1.7 <= identifier 45.7 0.1

Table 1197.2: Occurrences (per million words) of English words used in natural language sentences expressing some relative
state of affairs. Based on data from the British National Corpus.[108]

Word Occurrences per
Million Words

Word Occurrences per
Million Words

great 464 less 344
greater 154 lesser 18
greatest 51 least 45
greatly 33 – –
– – less than 40

January 30, 2008 v 1.1



CHANGES1199

O
cc

ur
re

nc
es

1

10

100

1,000

10,000
binary <
× decimal notation
• hexadecimal notation

××

×

•

×
×

•

×

•

×
×

×

•

×

×

×

×

•

×
×

×

×

•
×
•×•×•

×

•

×

×

×

××

×

×

•
×

×
×

×

•

×
×

×
×

×

×

×

××
×

×

××

×
×

×

×

•

×

•

×

×
××

×

•

×

×
×

××

×•
×

×

•××

×

×××××•

×

×
×

×

•
•

×

× ×

×
×

••

×

×
××××

×

×

××

×

×
×
× ××

×

•

×

•

binary >
×

•

×

•

×

•

×

•

×

•

×
×
×

•

×

•

×

•

×

•

×

×

•

××

•

×

•

×

•
××

•

×•
×

•

×

•
×

×××
×
××

×

××

•

×

•
×

•
×
×

•

×

×
×

×

•

×

×

•×

•

×

××××•

×

××

×
×

•

×
•

×

•
×•

×

×•×

×××
×
×

•

×

•
×
×
×
××
×
••

××

×

•
•
×
••××

×

×
•×
×
•

×
•×
•

×

•

×• •
×
•

×

•×
•
•

×
•
×
×
×•
×
•

×

×

×

×

×

×

×
××•••

××
×•

×

•
××

•

•

×

×

•

×

×

•×
•

Numeric value

O
cc

ur
re

nc
es

0 1632 64 100 128150 200 255

1

10

100

1,000

10,000 binary <=
×

•

×

•

×

•

××
×

•

×

•

×

•

×

•

×

•

×

•
×

•

×
•

×

×•

×
•

×

•
×•×

•×

•
×

•
××
•×

×

•

×

•
××

•
×

•×
•

×

•

×

•

×

•
×
•××

•
×
•
×•
×

••
•××
•××

•×

•
•

•
××

×
•
•
×
•
×

•
×××•

×

•×
×
•

×
×

•
•
×

••••

•

×

××

×
×
×•××
•
×
××
•

×
×•×
•
×
• ×

•
×
••×

•

×

•

××
×
••
× ×

••
× ×

•
×•

×

•

••
••

•
×
•
••

×

•
•
×

•

×•
×

•

Numeric value

0 1632 64 100 128150 200 255

binary >=×

•

×

•

×

•

×

•

×

•

×
×
×
•

×

•
×

×

•

×
×

•
××

×

•

×

•

×•

×

•
•

×

•×

•

×

×

×

•
×

××

•

×

×
•

×

•
•
×

×•

××××
××

×•×

×
×•
××

×

×

×

•

×

•

××

×

×
×

•

×
•
×
×
×
•
•
×
×
××
•

×

××
×××

×

×

•
×

×
×

×•

×
•

•
×
×

×
×

×•

×••

•
×
××•

×
•

•

×

•
×
×•

•
•
••

×

•×
×•×
×

×•

× •

×

• ×
×
•

×•

×
•

Figure 1197.1: Number of integer-constants having a given value appearing as the right operand of relational operators.
Based on the visible form of the .c files.

Table 1197.3: Occurrence of relational operators (as a percentage of all occurrences of the given operator; the parenthesized
value is the percentage of all occurrences of the context that contains the operator). Based on the visible form of the .c files.

Context % of < % of <= % of > % of >=

if control-expression 76.7 ( 3.4) 45.5 ( 6.7) 68.5 ( 1.8) 80.5 ( 6.0)
other contexts 11.5 (—) 4.8 (—) 9.5 (—) 8.4 (—)
while control-expression 4.8 ( 3.9) 4.6 ( 12.0) 4.8 ( 2.2) 7.6 ( 10.4)
for control-expression 7.1 ( 3.1) 45.2 ( 65.9) 17.2 ( 4.5) 3.5 ( 2.6)
switch control-expression 0.0 ( 0.0) 0.0 ( 0.0) 0.0 ( 0.0) 0.0 ( 0.0)

1199
— both operands have real type;relational

operators
real operands

v 1.1 January 30, 2008



CHANGES 1200

Table 1199.1: Occurrence of relational operators having particular operand types (as a percentage of all occurrences of each
operator; an _ prefix indicates a literal operand). Based on the translated form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

int >= _int 35.3 unsigned char > _int 2.3
int > _int 35.2 unsigned char >= _int 2.3
int < _int 34.8 ptr-to <= ptr-to 2.3
int <= _int 28.2 unsigned int >= unsigned int 2.1
int < int 25.5 long <= long 2.1
int <= int 17.5 long >= _int 2.0
other-types > other-types 15.8 float > _int 2.0
other-types < other-types 15.4 unsigned long > unsigned long 1.9
int > int 15.0 unsigned short > unsigned short 1.8
other-types <= other-types 14.5 unsigned short > _int 1.8
other-types >= other-types 13.2 unsigned int <= unsigned int 1.7
enum <= _int 12.6 ptr-to >= ptr-to 1.7
int >= int 10.8 int <= unsigned long 1.7
enum >= enum 7.5 float > float 1.7
unsigned int >= int 7.3 char >= _int 1.7
unsigned int > _int 6.0 unsigned long >= unsigned long 1.6
long < _int 5.3 unsigned long > _int 1.5
ptr-to > ptr-to 4.1 double <= _double 1.5
unsigned int <= _int 4.0 unsigned long <= unsigned long 1.4
unsigned int < unsigned int 3.7 long >= long 1.4
unsigned int >= _int 3.5 int < unsigned long 1.4
char <= _int 3.5 unsigned long < unsigned long 1.3
unsigned int > unsigned int 3.3 long < long 1.3
unsigned char <= _int 3.1 _long >= _long 1.3
long > long 2.9 unsigned short <= unsigned short 1.2
ptr-to < ptr-to 2.8 unsigned int > int 1.2
int < unsigned int 2.7 float < _int 1.2
unsigned long <= _int 2.6 unsigned short <= _int 1.1
unsigned int < _int 2.5 unsigned char < _int 1.1
_long >= long 2.5 float < float 1.1
long > _int 2.5 unsigned long > int 1.0
enum >= _int 2.5 long >= int 1.0
unsigned long >= int 2.4 float <= _int 1.0

1200

— both operands are pointers to qualified or unqualified versions of compatible object types; or relational
operators

pointer operands

January 30, 2008 v 1.1



CHANGES1212

Table 1200.1: Occurrence of relational operators having particular operand pointer types (as a percentage of all occurrences of
each operator with operands having a pointer type). Based on the translated form of this book’s benchmark programs.

Left Operand Op Right Operand % Left Operand Op Right Operand %

char * > char * 67.5 const char * > const char * 4.0
char * <= char * 39.6 other-types > other-types 3.8
char * >= char * 26.9 int * >= int * 3.6
char * < char * 25.8 const char * >= const char * 3.6
struct * <= struct * 23.2 struct * > struct * 3.1
unsigned char * >= unsigned char * 22.8 short * <= short * 3.0
unsigned char * < unsigned char * 21.0 other-types < other-types 2.8
short * >= short * 16.1 unsigned int * >= unsigned int * 2.6
struct * < struct * 14.9 const char * < const char * 2.6
unsigned char * <= unsigned char * 13.4 const unsigned char * < const unsigned char * 2.0
signed int * < signed int * 13.1 unsigned int * > unsigned int * 1.9
struct * >= struct * 13.0 unsigned long * <= unsigned long * 1.8
void * > void * 11.0 other-types <= other-types 1.8
void * < void * 9.4 const char * <= const char * 1.8
unsigned char * > unsigned char * 8.7 void * >= void * 1.6
unsigned short * <= unsigned short * 7.9 unsigned short * < unsigned short * 1.2
const unsigned char * <= const unsigned char * 4.9 unsigned int * < unsigned int * 1.2
ptr-to * < ptr-to * 4.8 union * <= union * 1.2
unsigned short * >= unsigned short * 4.7 int * < int * 1.2
const unsigned char * >= const unsigned char * 4.7 int * <= int * 1.2

1212
equality operators
syntax

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Numerical disparity

R
ea

ct
io

n 
tim

e 
(m

se
c)

0

250

500

600

700

equal close far

∆ ∆ ∆
•

•
•

∆
∆

∆
• •

•

Numerical disparity

Pe
rc

en
ta

ge
 e

rr
or

0

2

4

6

8

10

12

equal close far

∆
∆ ∆

•

• •

∆

∆
∆

•

• •

A-A∆ ∆

W-W• •

W-A∆ ∆

A-W• •

Figure 1212.1: Reaction time (in milliseconds) and error rates for same/different judgment for values between one and nine,
expressed in Arabic or Word form. Adapted from Dehaene and Akhavein.[53]

v 1.1 January 30, 2008



CHANGES 1215

Table 1212.1: Common token pairs involving the equality operators (as a percentage of all occurrences of each token). Based on
the visible form of the .c files. Note: entries do not always sum to 100% because several token sequences that have a very low
percentage are not listed.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

identifier != 0.6 69.2 ] != 1.4 5.1
identifier == 1.2 67.9 == -v 2.6 3.5
) == 1.6 25.1 == integer-constant 25.5 2.0
) != 0.8 24.7 == identifier 62.1 1.1
== character-constant 7.1 22.8 != integer-constant 22.7 0.9
!= character-constant 5.3 8.4 != identifier 65.0 0.6
] == 3.1 5.6

1214— both operands have arithmetic type; equality operators
arithmetic
operandsTable 1214.1: Occurrence of equality operators having particular operand types (as a percentage of all occurrences of each

operator). Based on the translated form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

ptr-to != ptr-to 28.5 char != _int 3.9
int == _int 21.1 ptr-to != _int 3.5
int != _int 15.8 unsigned long != unsigned long 2.5
ptr-to == ptr-to 15.3 unsigned long != _int 2.2
other-types == other-types 12.7 unsigned short != _int 2.0
other-types != other-types 12.6 int:16 16 != _int 2.0
unsigned char == _int 9.5 unsigned short != unsigned short 1.9
enum == _int 9.1 unsigned int != unsigned int 1.9
int:16 16 == _int 8.2 ptr-to == _int 1.8
int != int 6.5 unsigned short == _int 1.7
int == int 6.5 unsigned long == unsigned long 1.7
char == _int 5.5 unsigned long == _int 1.6
unsigned char != _int 4.8 unsigned long != _long 1.3
enum != _int 4.8 unsigned char != unsigned char 1.3
unsigned int != _int 4.4 unsigned int == unsigned int 1.1
unsigned int == _int 4.0

1215 — both operands are pointers to qualified or unqualified versions of compatible types; equality operators
pointer to com-

patible types

Numeric value

O
cc

ur
re

nc
es

0 1632 64 100 128150 200 255

1

10

100

1,000

10,000

binary==
× decimal notation
• hexadecimal notation

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•
×

•

×
•
×
•

×

•
×
•×
•

×
•

×

•

×•×
•

×•
×
•
×•

×
•×

•

×

•×

•
×
•×
•×
•×

•
××•

×
•

×•×
•

×
•

×

•

×
•

×
•

×

×

•

×

•×
•

×•

×•

•

••×

•

×

•
×
•

•
×•
×
•
×

•

×
•

×
••
×
•
×

•
××
•

×

•

×
•

×
•×•

×

••

×

•

×
•
×

•
•×

••
×

•
•

•
•×•
×

•

×
•

×

••
•

×

•

•
×

•

×

••

×

••×•
×

•

×•

×
•

•
×

•

×

•

×

•

×

•

••
•
••
××
•

•

×
•

•
•
••

•
×•
×
•
•

×
•
×

•

×•
×
•

×

•
•

•
×
•

•
×

•••

••×

•

•

••

•

••

•

×
×

•

••×••

•

×

×

•

••
•
•

•

•
×
•

•

•

•

•
•
×
•

•
×•
•
•

•

•×
×

•

•
•••
×

•×
••×
•

×
•
×
•
•
×

•
•
•
×
•

••×
•
•

•
•

•×

•
•
••
•
•

×

•

•
•

•••×

•

•
•×•
×
••
•
×

•

×

•

×
•

Constant value

0 1632 64 100 128150 200 255

binary!=

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•
×

•

×

•
×•

×

•

×

•

×
•
×
•
×
•

×
••

•×••
•

×
•

×

•

×
•
×

•

•

×•
•

×
•
×
•

×
•

×
•
•
×
•••×••
×
•
××••
×
×

•

×

×

•×
•×
•××
•
•
•
•

×

×•

×
•

•

×
•
•
•

•

•
••
•
•×
••

×

•

•
•
•
•

•

••×••

•

•
•

•

•

•
×

××•
•
×

•

••
••• ×

•
×

•

×
•••

•

•×•

•

•

•

•
•
• ×•

•

•
•

•

•

••

•

••••
•
••••

•

•

×

•×•××•

•

•×
××

••
××•
×

•

•••••

•

•
×

•

••
•

•

×

•×•×

•

×
•

×

•

Figure 1212.2: Number of integer-constants having a given value appearing as the right operand of equality operators. Based
on the visible form of the .c files.

January 30, 2008 v 1.1



CHANGES1235

Table 1215.1: Occurrence of equality operators having particular operand pointer types (as a percentage of all occurrences of
each operator with operands having a pointer type; an _ prefix indicates a literal operand, _int is probably the 0 representation of
the null-pointer constant). Based on the translated form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

struct * == _ int 59.9 int * != _ int 3.0
struct * != _ int 52.2 void * == _ int 2.2
union * != _ int 18.3 const char * == _ int 1.8
union * == _ int 18.1 int == void * 1.4
other-types == other-types 8.1 const char * != _ int 1.4
char * != _ int 8.1 int != void * 1.3
char * == _ int 7.3 unsigned char * == _ int 1.1
array-index != void * 6.9 ptr-to * != _ int 1.1
other-types != other-types 6.4 char * != array-index 1.1

1234
AND-expression
syntax
bitwise
& AND-expression:

equality-expression
AND-expression & equality-expression

Table 1234.1: Occurrence of the & and && operator (as a percentage of all occurrences of each operator; the parenthesized value
is the percentage of all occurrences of the context that contains the operator). Based on the visible form of the .c files.

Context Binary & &&

if control-expression 51.4 ( 10.5) 82.4 ( 10.4)
other contexts 45.3 (—) 7.7 (—)
while control-expression 2.1 ( 8.1) 6.9 ( 18.4)
for control-expression 0.3 ( 0.6) 3.0 ( 4.7)
switch control-expression 0.8 ( 5.2) 0.0 ( 0.0)

Table 1234.2: Common token pairs involving one of the operators &, |, or ^ (as a percentage of all occurrences of each token).
Based on the visible form of the .c files. Note: entries do not always sum to 100% because several token sequences that have
very low percentages are not listed.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

identifier | 0.4 74.0 & identifier 57.1 0.6
identifier & 0.7 67.5 | identifier 79.8 0.4
identifier ^ 0.0 51.1 & ( 7.4 0.3
) ^ 0.0 38.7 | ( 14.4 0.3
& ~ 4.6 30.1 ^ *v 5.5 0.1
) & 1.1 27.7 | integer-constant 5.5 0.1
) | 0.4 20.8 ^ integer-constant 20.8 0.0
] ^ 0.0 5.1 ^ identifier 55.5 0.0
] & 1.4 4.2 ^ ( 16.1 0.0
& integer-constant 30.6 1.5

1235Each of the operands shall have integer type.& binary
operand type

v 1.1 January 30, 2008



CHANGES 1240

Numeric value

O
cc

ur
re

nc
es

0 1632 64 100 128150 200 255

1

10

100

1,000

binary &
× decimal notation
• hexadecimal notation

×

•

×

•
×
•

×
•
×•

×•×
•

×
•

×
•

×•

••
×

•

•

•

×

•

×

•

•

×•×

•
•
×
•

•

•
•

•

•

•

×

•

×

•

•

••

•
• •

•

•
••
•×

•

•

•

•

×

•

×

•

•

•

•
•

×

•
•
•
×

•

•

•

•
•

•×

•

•

×

•

• •••

•

•

×

•

×

•

•
•

•

•
•
•

• •
•

×

•
•
•

••

•
•
•

•

•

•

•
•
••

•

×

•

•

•

•
•
•

•

•

••••
•
••

•

•

••
•

•
•

••

•

•

•
•

•

•

•

•

•

•

•

•

•

×

•

×

•

Figure 1234.1: Number of integer-constants having a given value appearing as the right operand of the binary & operator.
Based on the visible form of the .c files.

Table 1235.1: Occurrence of bitwise operators having particular operand types (as a percentage of all occurrences of each
operator; an _ prefix indicates a literal operand). Based on the translated form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

int | _int 27.1 unsigned int | unsigned int 4.0
int & _int 24.3 unsigned long & _int 3.8
_int | _int 23.0 unsigned int | unsigned long 3.4
unsigned int ^ unsigned int 17.7 unsigned int ^ _int 3.3
other-types & other-types 13.9 unsigned int ^ int 3.1
int | int 13.6 unsigned long & int 2.6
_int ^ _int 13.5 long ^ long 2.6
unsigned long ^ unsigned long 12.2 unsigned char & int 2.5
unsigned int & _int 11.5 unsigned long | unsigned long 2.4
unsigned char & _int 10.3 unsigned long & unsigned long 2.0
int ^ _int 10.3 unsigned int ^ unsigned char 1.8
other-types ^ other-types 9.9 unsigned short ^ unsigned short 1.7
int ^ int 9.8 int ^ unsigned char 1.7
unsigned int | int 9.6 unsigned short & unsigned short 1.5
other-types | other-types 8.9 unsigned short ^ _int 1.5
unsigned short & _int 7.1 long & int 1.4
int & int 6.3 int | unsigned char 1.4
unsigned int & int 5.7 unsigned short & int 1.3
long | long 5.5 unsigned int ^ unsigned short 1.3
unsigned int & unsigned int 4.6 long & _int 1.2
unsigned char ^ unsigned char 4.6 _int | int 1.2
unsigned char ^ _int 4.2 int ^ unsigned short 1.1

1237 The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the result is set if
and only if each of the corresponding bits in the converted operands is set).

0 1

0 0 0
1 0 1

1240 exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression

January 30, 2008 v 1.1



CHANGES1248

Usage
The ^ operator represents 1.2% of all occurrences of bitwise operators in the visible source of the .c files.

1243The result of the ^ operator is the bitwise exclusive OR of the operands (that is, each bit in the result is set if
and only if exactly one of the corresponding bits in the converted operands is set).

0 1

0 0 1
1 1 0

1244
inclusive-OR-
expression
syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

Table 1244.1: Occurrence of the | and || operator (as a percentage of all occurrences of each operator; the parenthesized value
is the percentage of all occurrences of the context that contains the operator). Based on the visible form of the .c files.

Context | ||

if control-expression 8.8 ( 0.7) 86.0 ( 6.9)
other contexts 90.7 (—) 11.9 (—)
while control-expression 0.3 ( 0.5) 1.9 ( 2.7)
for control-expression 0.0 ( 0.0) 0.3 ( 0.2)
switch control-expression 0.1 ( 0.3) 0.0 ( 0.0)

1247The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in the result is set if
and only if at least one of the corresponding bits in the converted operands is set).

0 1

0 0 1
1 1 1

1248
logical-AND-
expression
syntax

Numeric value

O
cc

ur
re

nc
es

0 1632 64 100 128150 200 255

1

10

100

binary |
× decimal notation

• hexadecimal notation×

•

×

•
×•×•×
•

×•

×
•

×
•
×
•

×•×•
×•
×
•

×
•

×

•
×

•×

•

×

•

×
×
×

•

×
•

•

•
•

×

••
•

×•×

•

×

•

×

•

•

•
•

•••××

•

•×••

•
×

•

••

•

•

•

•

•
×•

•

•

•
•

•

•

•••

•×

•

•••

•

×
• •

×

•

••

•

•• •

•

• ••

•

×

•

×

•

Figure 1244.1: Number of integer-constants having a given value appearing as the right operand of the bitwise-OR operator.
Based on the visible form of the .c files.

v 1.1 January 30, 2008



CHANGES 1255

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Table 1248.1: Various identities in boolean algebra expressed using the || and && operators. Use of these identities may change
the number of times a particular expression is evaluated (which is sometimes the rationale for rewriting it). The relative order in
which expressions are evaluated may also change (e.g., when A==1 and B==0 in (A && B) || (A && C) the order of evaluation
is A⇒ B⇒ A⇒ C, but after use of the distributive law the order becomes A⇒ B⇒ C).

Relative Order Preserved Expression⇒ Alternative Representation

Distributive laws
no (A && B) || (A && C)⇒ A && (B || C)
no (A || B) && (A || C)⇒ A || (B && C)

DeMorgan’s theorem
yes !(A || B)⇒ (!A) && (!B)
yes !(A && B)⇒ (!A) || (!B)

Other identities
yes A && ((!A) || B)⇒ A && B
yes A || ((!A) && B)⇒ A || B

The consensus identities
no (A && B) || ((!A) && C) || (B && C)⇒ (A && B) || ((!A) && C))
yes (A && B) || (A && (!B) && C)⇒ (A && B) || (A && C)
yes (A && B) || ((!A) && C)⇒ ((!A) || B) && (A || C)

Table 1248.2: Common token pairs involving &&, or || (as a percentage of all occurrences of each token). Based on the visible
form of the .c files. Note: entries do not always sum to 100% because several token sequences that have very low percentages are
not listed.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

identifier && 0.4 48.5 && defined 0.9 6.2
) || 0.9 42.7 || ! 11.3 6.0
identifier || 0.2 39.3 character-constant || 4.2 4.2
) && 1.1 34.9 character-constant && 5.3 3.3
|| defined 4.8 21.0 && ( 28.7 0.9
integer-constant || 0.3 12.4 || ( 29.7 0.6
integer-constant && 0.4 11.5 && identifier 53.9 0.5
&& ! 13.5 11.3 || identifier 51.8 0.3

1249 Each of the operands shall have scalar type. &&
operand type

Table 1249.1: Occurrence of logical operators having particular operand types (as a percentage of all occurrences of each
operator; an _ prefix indicates a literal operand). Based on the translated form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

int || int 87.7 _long || _long 2.2
int && int 73.9 int && ptr-to 2.2
other-types && other-types 12.8 int && char 1.8
other-types || other-types 8.4 int || _long 1.7
ptr-to && int 4.5 int && _int 1.3
char && int 2.3 ptr-to && ptr-to 1.1

1255 If the first operand compares equal to 0, the second operand is not evaluated. &&
second operand

January 30, 2008 v 1.1



CHANGES1288

Table 1255.1: Truth table showing how each operand of (A || (B && C)) can affect its result. Case 1 and 2 show that A affects
the outcome; Case 2 and 3 shows that B affects the outcome; Case 3 and 4 shows that C affects the outcome.

Case A B C Result

1 FALSE FALSE TRUE FALSE
2 TRUE FALSE TRUE TRUE
3 FALSE TRUE TRUE TRUE
4 FALSE TRUE FALSE FALSE

1256
logical-OR-
expression
syntax

logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

Usage
Usage information is given elsewhere.

logical-AND-
expression

syntax

1248

1264
conditional-
expression
syntax

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Table 1264.1: Common token pairs involving ? or : (to prevent confusion with the : punctuation token the operator form is
denoted by ?:) (as a percentage of all occurrences of each token). Based on the visible form of the .c files. Note: entries do not
always sum to 100% because several token sequences that have very low percentages are not listed.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

) ? 0.4 44.7 ? string-literal 20.1 1.5
identifier ? 0.1 44.0 ?: integer-constant 28.7 0.3
identifier ?: 0.1 40.3 ? integer-constant 20.2 0.2
integer-constant ?: 0.3 23.1 ? identifier 43.9 0.1
string-literal ?: 1.5 20.2 ?: identifier 35.9 0.1
) ?: 0.1 11.6 ?: ( 7.2 0.1
integer-constant ? 0.1 9.6 ? ( 6.2 0.1
?: string-literal 21.0 1.6

1266One of the following shall hold for the second and third operands:conditional
operator
second and third
operands Table 1266.1: Occurrence of the ternary : operator (denoted by the character sequence ?:) having particular operand types (as a

percentage of all occurrences of each operator; an _ prefix indicates a literal operand). Based on the translated form of this book’s
benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

ptr-to ?: ptr-to 29.5 int ?: _int 5.7
other-types ?: other-types 12.1 _char ?: _char 3.4
_int ?: _int 10.4 unsigned int ?: unsigned int 2.2
int ?: int 10.0 unsigned short ?: unsigned short 1.2
void ?: void 9.4 signed int ?: _int 1.1
unsigned long ?: unsigned long 7.9 char ?: void 1.1
_int ?: int 6.0

v 1.1 January 30, 2008



CHANGES 1288

1288
assignment-
expression

syntax
assignment-expression:

conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= /= %= += -= <<= >>= &= ^= |=

Usage

For a comparison with load frequencies see Table 976.2.

Table 1288.1: Common token pairs involving the assignment operators (as a percentage of all occurrences of each token). Based
on the visible form of the .c files. Note: entries do not always sum to 100% because several token sequences that have very low
percentages are not listed.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

identifier %= 0.0 100.0 v++ = 7.6 0.7
identifier /= 0.0 99.3 += integer-constant 21.7 0.3
identifier >>= 0.0 99.3 |= identifier 77.0 0.2
identifier <<= 0.0 97.5 += identifier 68.0 0.2
identifier += 0.3 96.3 >>= integer-constant 87.1 0.1
identifier *= 0.0 96.0 -= integer-constant 24.2 0.1
identifier -= 0.1 95.2 &= integer-constant 12.4 0.1
identifier |= 0.3 93.9 |= integer-constant 10.7 0.1
identifier &= 0.1 93.1 -= identifier 65.1 0.1
identifier = 9.4 90.9 += ( 6.5 0.1
identifier ^= 0.0 85.9 |= ( 12.0 0.1
&= ~ 75.0 52.5 <<= integer-constant 85.1 0.0
= +v 0.0 45.1 /= integer-constant 52.1 0.0
= floating-constant 0.1 15.7 *= integer-constant 39.8 0.0
= character-constant 0.8 14.2 ^= integer-constant 34.5 0.0
= -v 1.6 12.0 %= integer-constant 31.5 0.0
] ^= 0.0 11.1 &= identifier 8.6 0.0
= &v 1.9 10.2 %= identifier 68.1 0.0
= *v 1.1 9.9 ^= identifier 46.4 0.0
= integer-constant 19.6 9.0 *= identifier 44.2 0.0
] = 21.8 6.8 /= identifier 34.6 0.0
= identifier 62.5 6.5 <<= identifier 13.4 0.0
= sizeof 0.3 5.9 >>= identifier 10.5 0.0
] &= 0.2 5.7 #error = 16.9 0.0
] |= 0.4 4.6 -= ( 7.0 0.0
= ( 9.1 3.5 /= ( 5.8 0.0
*= floating-constant 6.3 1.6 ^= ( 13.9 0.0

January 30, 2008 v 1.1



CHANGES1310

Table 1288.2: Occurrence of executed store instructions (as a percentage of all instructions executed) in two different kinds of
functions (Leaf functions do not call any other functions, while Non-Leaf do). Adapted from Calder, Grunwald, and Zorn.[27]

Program Leaf Non-Leaf Program Leaf Non-Leaf

burg 34.3 7.7 eqntott 0.0 11.4
ditroff 8.3 8.3 espresso 6.5 3.9
tex 15.1 9.8 gcc 9.6 12.0
xfig 8.0 11.7 li 0.0 16.3
xtex 8.3 11.2 sc 1.2 11.1
compress 83.5 9.2 Mean 15.9 10.2

1290An assignment operator stores a value in the object designated by the left operand.

Usage

A study by Lepak, Bell, and Lipasti[110] investigated value locality with respect to store operations (using thevalue locality

SPEC95 benchmarks). They defined a silent store to be a store operation that does not change the system
state (i.e., the value being written matches the value already held at the location being stored to). They also
defined program structure store value locality (PSSVL) to refer to the same value being stored from the same
program location and message-passing store value locality (MPSVL) to refer to the same value being stored
to the same address in storage (which may be holding different objects at different times during the execution
of a program).

Table 1290.1: Percentage of stores that are silent. The results from two instruction sets, the PowerPC (PPC) and SimpleScalar
(SS), are given for silent stores. The measurements for Program Structure Store Value Locality (PSSVL) and Message-Passing
Store Value Locality (MPSVL) are for the PowerPC only. Adapted from Lepak, Bell, and Lipasti.[110]

Program Silent stores
(PPC/SS)

PSSVL
(PPC)

MPSVL
(PPC)

Program Silent stores
(PPC/SS)

PSSVL
(PPC)

MPSVL
(PPC)

go 38/27 30 36 tomcatv 47/33 40 45
m88ksim 68/62 56 65 swim 34/26 20 19
gcc 53/46 37 49 mgrid 23/ 7 24 17
compress 42/39 35 16 applu 37/35 35 28
li 34/20 32 34 apsi 21/25 22 20
ijpeg 43/33 52 46 fpppp 15/15 15 14
perl 49/36 39 42 wave5 25/22 30 20
vortex 64/55 71 57

1310For the operators += and -= only, either the left operand shall be a pointer to an object type and the right shallcompound
assignment
constraints have integer type, or the left operand shall have qualified or unqualified arithmetic type and the right shall

have arithmetic type.

v 1.1 January 30, 2008



CHANGES 1348

Table 1310.1: Occurrence of assignment operators having particular operand types (as a percentage of all occurrences of each
operator; an _ prefix indicates a literal operand, occurrences below 2.3% were counted as other-types). Based on the translated
form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

other-types -= other-types 34.5 float /= float 6.4
other-types += other-types 33.5 unsigned short |= _int 6.2
other-types = other-types 32.8 ptr-to += _int 6.2
int %= _int 31.0 unsigned long |= int 6.1
ptr-to = ptr-to 29.7 unsigned int -= unsigned int 5.9
int *= _int 29.5 unsigned short >>= _int 5.8
long -= long 28.9 unsigned char <<= _int 5.7
unsigned int <<= _int 28.3 other-types %= other-types 5.7
unsigned int >>= _int 28.2 long += _int 5.6
unsigned int ^= unsigned int 26.7 long *= _int 5.3
int >>= _int 26.2 unsigned long &= int 5.1
int <<= _int 25.5 unsigned long /= _int 5.0
int /= _int 23.8 unsigned int &= unsigned int 4.6
int += int 22.1 unsigned int |= unsigned int 4.6
unsigned char &= int 19.7 long %= _int 4.6
unsigned int &= int 19.4 unsigned short /= _int 4.5
int -= int 17.4 unsigned char &= _int 4.3
long ^= long 16.9 unsigned long |= _int 4.1
other-types *= other-types 16.8 unsigned char |= int 3.9
other-types &= other-types 16.7 long <<= _int 3.8
int &= int 16.2 float *= _double 3.7
unsigned long <<= _int 15.9 unsigned int += unsigned int 3.5
other-types ^= other-types 15.3 long &= int 3.5
other-types /= other-types 14.4 unsigned int = unsigned int 3.4
other-types |= other-types 13.5 int %= unsigned int 3.4
unsigned int /= _int 12.9 unsigned long ^= int 3.3
ptr-to += int 12.8 float *= double 3.3
unsigned int %= _int 12.6 unsigned long *= _int 3.1
int %= int 12.6 unsigned char ^= unsigned char 3.1
int = int 12.3 unsigned char ^= int 3.1
unsigned int |= _int 12.1 ptr-to += unsigned long 3.1
float *= float 12.1 double *= double 3.1
int |= _int 12.0 unsigned short /= unsigned short 3.0
unsigned char |= _int 11.7 unsigned short |= int 3.0
unsigned int %= unsigned int 11.5 int /= unsigned int 3.0
unsigned char %= _int 11.5 float /= int 3.0
int /= int 11.4 double /= double 3.0
unsigned long ^= unsigned long 11.3 unsigned int += _int 2.9
int ^= _int 11.1 float *= _int 2.9
int = _int 11.0 unsigned long += unsigned long 2.8
unsigned char >>= _int 10.3 unsigned long |= unsigned long 2.8
other-types >>= other-types 9.6 unsigned long |= long 2.8
unsigned long >>= _int 9.5 long = long 2.8
int *= int 9.3 int &= _int 2.8
unsigned short <<= _int 8.9 float = float 2.8
unsigned int *= _int 8.4 unsigned int -= int 2.7
int -= _int 8.0 int >>= int 2.7
unsigned short &= int 7.9 int ^= int 2.7
long >>= _int 7.7 unsigned char = _int 2.6
unsigned int |= int 7.5 float -= float 2.6
long /= _int 7.4 unsigned long = unsigned long 2.5
int += _int 7.4 unsigned long <<= unsigned int 2.5
int |= int 7.4 int <<= int 2.5
unsigned short %= _int 6.9 float /= _double 2.5
other-types <<= other-types 6.7 int *= float 2.4
unsigned char ^= _int 6.4 unsigned char |= unsigned char 2.3

January 30, 2008 v 1.1



CHANGES1348

1348
declaration
syntax

declaration:
declaration-specifiers init-declarator-listopt ;

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt
function-specifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Table 1348.1: Occurrence of types used in declarations of objects (as a percentage of all types). Adapted from Engblom[60] and
this book’s benchmark programs.

Type Embedded Book’s benchmarks

integer 55.97 37.5
float 0.05 1.6
pointer 22.08 (data)/0.23 (code) 48.2
struct/union 9.88 6.1
array 11.80 6.6

Lag

C
on

di
tio

na
l r

es
po

ns
e 

pr
ob

ab
ili

ty

0.05

0.1

0.15

0.2

0.25

-5 -3 -1 1 3 5

• • •
•

•

•

•

• • •

Lag

C
on

di
tio

na
l r

es
po

ns
e 

la
te

nc
y

(s
ec

s)

1

3

5

7

-5 -3 -1 1 3 5

•
•

• •

•

•

•
•

• •

Figure 1348.1: The lag recency effect. The plot on the left shows the probability of a subject recalling an item having a given lag,
while the plot on the right gives the time interval between recalling an item having a given lag (error bars give 95% confidence
interval). If a subject, when asked to remember the list “ABSENCE HOLLOW PUPIL”, recalled “HOLLOW” then “PUPIL”, the
recall of “PUPIL” would have a lag of one (“ABSENCE” followed by “PUPIL” would be a lag of 2). Had the subject recalled
“HOLLOW” then “ABSENCE”, the recall of “ABSENCE” would be a lag of minus one. Adapted from Howard and Kahana.[85]

v 1.1 January 30, 2008



CHANGES 1364

Table 1348.2: Occurrence of types used to declare objects in block scope (as a percentage of all such declarations). Based on the
translated form of this book’s benchmark programs.

Type % Type %

int 28.1 long 3.0
struct * 27.7 union * 2.9
other-types 10.8 unsigned short 2.3
unsigned int 5.5 unsigned char 2.0
struct 4.9 char 1.8
unsigned long 4.8 char [] 1.5
char * 3.5 unsigned char * 1.3

Table 1348.3: Occurrence of types used to declare objects with internal linkage (as a percentage of all such declarations). Based
on the translated form of this book’s benchmark programs.

Type % Type %

int 20.9 const char [] 2.4
other-types 14.4 unsigned int 1.8
struct 13.0 const struct 1.8
struct * 8.2 void *() 1.7
struct [] 7.4 const unsigned char [] 1.6
( const char * const ) [] 4.0 unsigned int [] 1.4
unsigned char [] 3.4 int *() 1.4
unsigned short [] 3.3 ( struct * ) [] 1.3
int [] 2.9 ( char * ) [] 1.3
char * 2.8 unsigned long 1.2
char [] 2.7 const short [] 1.2

Table 1348.4: Occurrence of types used to declare objects with external linkage (as a percentage of all such declarations). Based
on the translated form of this book’s benchmark programs.

Type % Type %

int 22.8 char * 3.2
const char [] 15.4 union * 3.0
other-types 10.6 enum 2.4
struct * 10.3 float 1.4
const struct 10.2 char [] 1.4
struct 8.2 unsigned int 1.2
void *() 4.6 int [] 1.2
struct [] 4.1

1364
storage-

class specifier
syntax

storage-class-specifier:
typedef
extern
static
auto
register

January 30, 2008 v 1.1



CHANGES1378

Table 1364.1: Common token pairs involving a storage-class. Based on the visible form of the .c files (the keyword auto
occurred 14 times).

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

static void 33.7 32.7 extern int 32.1 1.7
static int 28.2 15.1 register struct 19.1 1.4
typedef union 3.2 11.0 typedef struct 62.4 1.2
static const 1.5 10.0 register int 23.0 1.2
static volatile 0.3 8.6 register char 10.2 1.2
typedef enum 10.8 8.2 register unsigned 6.1 0.9
static signed 0.0 6.5 extern char 7.4 0.9
static unsigned 3.8 5.5 extern struct 6.9 0.5
extern double 1.3 5.5 static identifier 21.0 0.3
static char 4.1 5.1 typedef unsigned 6.2 0.2
static struct 6.4 4.8 typedef identifier 7.9 0.0
register enum 1.6 4.6 register identifier 35.9 0.0
extern void 21.5 2.1 extern identifier 23.7 0.0

Table 1364.2: Common token pairs involving a storage-class. Based on the visible form of the .h files (the keyword auto
occurred 6 times).

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

typedef union 12.4 67.1 typedef unsigned 6.6 3.1
typedef enum 6.2 37.2 extern unsigned 2.9 2.8
typedef signed 0.5 28.6 static void 10.3 2.2
extern void 28.6 24.0 typedef void 4.0 1.6
extern double 0.3 17.9 static int 7.0 1.2
typedef struct 46.3 16.6 extern identifier 32.2 0.9
extern int 23.2 15.2 register long 16.0 0.8
extern float 0.3 9.8 register unsigned 24.8 0.6
register signed 2.6 8.2 static identifier 70.3 0.5
static const 6.4 5.0 register int 18.4 0.3
extern char 3.8 4.8 typedef identifier 16.7 0.2
extern struct 4.3 3.3 register identifier 18.4 0.0

1369A declaration of an identifier for an object with storage-class specifier register suggests that access to theregister
storage-class object be as fast as possible.

Table 1369.1: Degree of use of floating-point and integer register instances (a particular value loaded into a register). Values
denote the percentage of register instances with a particular degree of use (listed across the top), for the program listed on the left.
For instance, 15.51% of the integer values loaded into a register, in gcc, are used twice. Left half of table refers to floating-point
register instances, right half of table to integer register instances. Zero uses of a value loaded into a register occur in situations
such as an argument passed to a function that is never accessed. Adapted from Franklin and Sohi.[70]

Usage 0 1 2 3 ≥4 Average 0 1 2 3 ≥4 Average

eqntott 0.89 71.34 17.54 9.47 0.76 1.86
espresso 3.67 72.30 17.66 3.74 2.63 1.48
gcc 6.26 67.37 15.51 4.45 6.41 1.69
xlisp 4.27 66.14 12.42 10.20 6.97 1.84
dnasa7 0.00 99.83 0.02 0.03 0.12 1.31 0.67 2.36 16.29 64.36 16.33 3.28
doduc 1.46 84.00 9.51 1.94 3.09 1.36 10.31 44.35 26.52 10.13 8.69 2.93
fpppp 0.16 91.09 6.15 1.14 1.46 1.16 1.34 10.12 83.45 0.46 4.63 3.09
matrix300 0.00 99.92 0.00 0.00 0.08 1.25 15.29 61.54 7.71 0.12 15.35 1.92
spice2g6 0.21 79.85 19.22 0.16 0.56 1.22 4.04 73.38 12.08 3.56 6.94 1.68
tomcatv 0.00 86.43 8.30 1.49 3.77 1.26 0.12 24.99 37.54 27.40 9.96 3.22

v 1.1 January 30, 2008



CHANGES 1378

1378

type specifier
syntax

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Imaginary
struct-or-union-specifier
enum-specifier
typedef-name

X3 X2 X1 X0

Y3 Y2 Y1 Y0

op op op op

X3 op Y3 X2 op Y2 X1 op Y1 X0 op Y0

Figure 1378.1: Behavior of packed single-precision floating-point operations supported by the Intel Pentium processor.[87]

January 30, 2008 v 1.1



CHANGES1382

Table 1378.1: Common token pairs involving a type-specifier. Based on the visible form of the .c files. The type specifiers
_Bool, _Complex, and _Imaginary did not appear in the visible form of the .c files.

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

unsigned long 38.7 72.2 ; long 0.1 6.2
unsigned short 5.8 63.8 , void 0.3 5.8
char *p 74.5 63.3 static unsigned 3.8 5.5
( signed 0.0 60.5 extern double 1.3 5.5
; enum 0.1 45.5 } int 2.2 5.3
( struct 2.9 41.8 { signed 0.0 5.2
; float 0.1 40.0 static char 4.1 5.1
; union 0.0 33.7 header-name double 0.2 5.1
static void 33.7 32.7 static struct 6.4 4.8
( float 0.0 32.0 register enum 1.6 4.6
( unsigned 1.0 29.0 long *p 7.1 2.8
( void 1.4 26.6 int identifier 87.6 2.3
; unsigned 1.0 26.4 extern void 21.5 2.1
; int 2.5 24.8 struct identifier 99.0 1.9
( char 1.0 23.9 extern int 32.1 1.7
{ union 0.0 23.4 short *p 21.8 1.4
( double 0.0 22.9 register struct 19.1 1.4
; double 0.0 19.8 const unsigned 6.2 1.4
void *p 17.5 19.0 const struct 11.1 1.3
, unsigned 0.6 18.9 typedef struct 62.4 1.2
} void 4.1 18.0 register int 23.0 1.2
unsigned char 21.2 18.0 register char 10.2 1.2
; struct 1.3 17.6 volatile unsigned 25.6 1.1
; char 0.8 17.5 void identifier 61.7 0.9
, int 1.4 15.9 void ) 17.5 0.9
static int 28.2 15.1 register unsigned 6.1 0.9
; signed 0.0 14.7 extern char 7.4 0.9
{ struct 4.3 14.5 const void 5.3 0.8
identifier double 0.0 13.1 signed short 11.3 0.7
{ unsigned 1.9 12.5 int ) 6.6 0.6
, struct 0.8 12.2 extern struct 6.9 0.5
{ int 4.8 11.5 volatile struct 15.5 0.4
{ enum 0.1 11.1 long identifier 68.3 0.4
typedef union 3.2 11.0 long ) 21.7 0.4
( short 0.0 11.0 float *p 9.2 0.3
; short 0.0 10.6 char identifier 22.6 0.3
( int 1.0 10.6 typedef unsigned 6.2 0.2
, float 0.0 10.6 signed long 20.8 0.2
const char 54.1 10.4 double *p 7.9 0.2
{ float 0.1 10.2 volatile int 7.4 0.1
( union 0.0 9.9 unsigned identifier 7.0 0.1
, char 0.4 9.9 union { 34.5 0.1
( long 0.2 9.2 signed char 22.6 0.1
, enum 0.0 9.2 short identifier 60.9 0.1
unsigned int 24.6 9.1 enum { 13.4 0.1
{ double 0.0 8.6 union identifier 65.5 0.0
typedef enum 10.8 8.2 signed int 7.5 0.0
, double 0.0 8.2 signed ) 37.9 0.0
int *p 4.1 8.1 short ) 14.0 0.0
, union 0.0 8.0 float identifier 64.3 0.0
, signed 0.0 7.9 float ) 26.1 0.0
) enum 0.0 7.1 enum identifier 86.6 0.0
{ char 1.3 7.1 double identifier 70.7 0.0
static signed 0.0 6.5 double ) 19.1 0.0
; void 0.3 6.3

v 1.1 January 30, 2008



CHANGES 1390

1382
type specifiers

possible sets of

--~ void
--~ char
--~ signed char
--~ unsigned char
--~ short, signed short, short int, or signed short int
--~ unsigned short, or unsigned short int
--~ int, signed, or signed int
--~ unsigned, or unsigned int
--~ long, signed long, long int, or signed long int
--~ unsigned long, or unsigned long int
--~ long long, signed long long, long long int, or signed long long int
--~ unsigned long long, or unsigned long long int
--~ float
--~ double
--~ long double
--~ _Bool
--~ float _Complex
--~ double _Complex
--~ long double _Complex
--~float _Imaginary
--~double _Imaginary
--~long double _Imaginary
--~ struct or union specifier
--~ enum specifier
--~ typedef name

Table 1382.1: Occurrence of type-specifier sequences (as a percentage of all type specifier sequences; cut-off below 0.1%).
Based on the visible form of the .c files.

Type Specifier Sequence % Type Specifier Sequence %

int 39.9 long 2.2
void 24.3 unsigned 1.6
char 15.6 unsigned short 0.9
unsigned long 6.2 float 0.6
unsigned int 4.0 short 0.5
unsigned char 3.4 double 0.5

1390
struct/union

syntax

struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:

January 30, 2008 v 1.1



CHANGES1403

type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt : constant-expression

Usage
A study by Sweeney and Tip[162] of C++ applications found that on average 11.6% of members were dead
(i.e., were not read from) and that 4.4% of object storage space was occupied by these dead data members.
Usage information on member names and their types is given elsewhere (see Table 443.1 and Table 443.2).

Table 1390.1: Number of occurrences of the given token sequence. Based on the visible source of the .c files (.h files in
parentheses).

Token Sequence Occurrences Token Sequence Occurrences

enum { 456 (1,591) struct id ; 76 (13,384)
enum id ; 0 (0) struct id id 122,974 (27,589)
enum id { 474 (1,059) union { 297 (725)
enum id id 2,922 (633) union id ; 0 (11)
struct { 1,567 (6,503) union id { 105 (2,624)
struct id { 4,407 (1,311) union id id 330 (231)

1393The expression that specifies the width of a bit-field shall be an integer constant expression that has abit-field
maximum width nonnegative value that shall not exceed the numberwidth of bits in an object of the type that iswould be

specified ifwere the colon and expression are omitted.

1403A member of a structure or union may have any object type other than a variably modified type.103)struct member
type

Bits

B
it-

fie
ld

 d
ec

la
ra

tio
ns

01 8 16 24 32

1

10

100

1,000
×

×
×

×

××
×

×

×
×

×

×

×

×

×

×

×
×

×

×

×

×

×

Figure 1393.1: Number of bit-field declarations specifying a given number of bits. Based on the translated form of this book’s
benchmark programs. (Declarations encountered in any source or header file were only counted once, the contents of system
headers were ignored.)

v 1.1 January 30, 2008



CHANGES 1463

Table 1403.1: Occurrence of structure member types (as a percentage of the types of all such members). Based on the translated
form of this book’s benchmark programs.

Type % Type % Type % Type %

int 15.8 unsigned short 7.7 char * 2.3 void *() 1.3
other-types 12.7 struct 7.2 enum 1.9 float 1.2
unsigned char 11.1 unsigned long 5.2 long 1.8 short 1.0
unsigned int 10.4 unsigned 4.0 char 1.8 int *() 1.0
struct * 8.8 unsigned char [] 3.1 char [] 1.5

Table 1403.2: Occurrence of union member types (as a percentage of the types of all such members). Based on the translated
form of this book’s benchmark programs.

Type % Type % Type % Type %

struct 46.9 unsigned int 3.8 double 1.9 char [] 1.3
other-types 11.3 char * 2.8 enum 1.7 union * 1.1
struct * 8.3 unsigned long 2.4 unsigned char 1.5
int 6.0 unsigned short 2.1 struct [] 1.3
unsigned char [] 4.3 long 2.1 ( struct * ) [] 1.3

1439
enumera-

tion specifier
syntax

enum-specifier:
enum identifieropt { enumerator-list }
enum identifieropt { enumerator-list , }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

Usage
A study by Neamtiu, Foster, and Hicks[129] of the release history of a number of large C programs, over 3-4
years (and a total of 43 updated releases), found that in 40% of releases one or more enumeration constants
were added to an existing enumeration type while enumeration constants were deleted in 5% of releases and
had one or more of their names changed in 16% of releases.[128]

Table 1439.1: Some properties of the set of values (the phrase all values refers to all the values in a particular enumeration
definition) assigned to the enumeration constants in enumeration definitions. Based on the translated form of this book’s
benchmark programs.

Property %

All value assigned implicitly 60.1
All values are bitwise distinct and zero is not used 8.6
One or more constants share the same value 2.9
All values are continuous , i.e. , number of enumeration
constants equals maximum value minus minimum value
plus 1

80.4

1463 If an identifier is provided,110) the type specifier also declares the identifier to be the tag of that type. tag
declare

January 30, 2008 v 1.1



CHANGES1476

Enumeration constants

E
nu

m
er

at
io

n 
ty

pe
s

1 2 5 10 20 50 100

1

10

100

1,000 × enumeration constants in definition

• uninitialized enumeration constants in definition

initialized enumeration constants in definition

×

× ×
× ×

××
×××

×
××

×
×
×

×××

×

×
×××

×

×
××
×
×
×
×
××
×××

×
××
×××

×
×
××

×

×××××××××××× ×××

×
×
××

•

•
•

• •

• • •
• •••

•
•
•
•

•
••

•

•••

••

••
••
••
•
•
•

•••••••

•
•

•

••

••

•• • •••

•
•

••

Figure 1439.1: Number of enumeration constants in an enumeration type and number whose value is explicitly or implicitly
specified. Based on the translated form of this book’s benchmark programs (also see Figure 298.1).

Table 1463.1: Occurrence of types declared with tag names (as a percentage of all occurrences of each keyword). Based on the
visible form of the .c and .h files.

.c files .h files

union identifier 65.5 75.8
struct identifier 99.0 88.4
enum identifier 86.6 53.6

1472If a type specifier of the formstruct-or-
union identifier
visible

struct-or-union identifier

or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a tag is visible, then
it specifies the same type as that other declaration, and does not redeclare the tag.

1476
type qualifier
syntax

type-qualifier:
const
restrict
volatile

Usage

Developers do not always make full use of the const qualifier. An automated analysis[69] of programs whose
declarations contained a relatively high percentage (29%) of const qualifiers found that it would have been
possible to declare 70% of the declarations using this qualifier. Engblom[60] reported that for real-time
embedded C code 17% of object declarations contained the const type qualifier.

v 1.1 January 30, 2008



CHANGES 1629

References to each tag

F
ile

s

0 5 10 15 20

1

10

100

1,000

10,000 ×
×

× ×
× × × × × × × × × × × × × × × ×

•
•

•
• •

• •

• •
•

•
• •

•
•

•

•

•
•

∆
∆ ∆

∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∗

∗

∗
∗

∗
∗ ∗ ∗ ∗

∗
∗

∗

∗

∗
∗

∆ tag definition not visible in file
× struct tags
• enum tags

union tags
∗ no tag in definition

Figure 1472.1: Number of files containing a given number of references to each tag previously defined in the visible source
of that file (times, bullet, square; the definition itself is not included in the count), tags with no definition visible in the .c file
(triangle; i.e., it is defined in a header) and anonymous structure/union/enumeration definitions (star). Based on the visible form
of the .c files.

Table 1476.1: Common token sequences containing type-qualifiers (as a percentage of each type-qualifier). Based on
the visible form of the .c files.

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

; volatile 0.1 36.1 { const 0.2 5.6
, const 0.2 32.8 const unsigned 6.2 1.4
( const 0.2 28.1 const struct 11.1 1.3
( volatile 0.0 26.2 volatile unsigned 25.6 1.1
; const 0.1 14.1 const void 5.3 0.8
identifier volatile 0.0 11.4 volatile struct 15.5 0.4
{ volatile 0.1 11.0 volatile int 7.4 0.1
const char 54.1 10.4 volatile identifier 36.2 0.0
static const 1.5 10.0 volatile ( 8.9 0.0
static volatile 0.3 8.6 const identifier 17.6 0.0

1529 Making a function an inline function suggests that calls to the function be as fast as possible.118) inline
suggests
fast calls

Table 1529.1: Number of bytes of stack space needed by various programs before and after inlining (automatically performed by
vpcc). Bytes saved refers to the amount of storage saved by optimizing the allocation of locally defined objects. Adapted from
Ratliff.[142]

Program Stack
Size

Bytes
Saved (%)

Inlined
Stack Size

Inlined Bytes
Saved (%)

Program Stack
Size

Bytes
Saved (%)

Inlined
Stack Size

Inlined Bytes
Saved (%)

ackerman 312 8 (2.56) 232 8 (3.45) linpack 1,504 48 (3.19) 3,312 112 ( 3.38)
bubblesort 568 8 (1.41) 136 8 (5.88) mincost 1,216 0 (—) 192 8 ( 4.17)
cal 384 0 (—) 96 0 (—) prof 1,584 0 (—) 400 40 (10.00)
cmp 768 0 (—) 192 0 (—) sdiff 2,536 0 (—) 5,784 16 ( 0.28)
csplit 1,488 0 (—) 728 0 (—) spline 560 8 (1.43) 200 8 ( 4.00)
ctags 8,144 0 (—) 24,544 88 (0.36) tr 192 0 (—) 96 0 (—)
dhrystone 664 0 (—) 200 8 (4.00) tsp 3,008 8 (0.27) 2,216 56 ( 2.53)
grep 592 0 (—) 304 0 (—) whetstone 568 0 (—) 488 296 (60.66)
join 480 0 (—) 96 0 (—) yacc 4,232 0 (—) 1,360 8 ( 0.59)
lex 9,472 0 (—) 7,208 8 (0.11) average 1,989 4 (0.47) 2,510 34 ( 5.23)

1629
typedef name

syntax

January 30, 2008 v 1.1



CHANGES1641

typedef-name:

identifier

Usage

A study by Neamtiu, Foster, and Hicks[129] of the release history of a number of large C programs, over 3-4
years (and a total of 43 updated releases), found that in 16% of releases one or more existing typedef names
had the type they defined changed.[128]

Table 1629.1: Occurrences of types defined in a typedef definition (as a percentage of all types appearing in typedef definition).
Based on the translated form of this book’s benchmark programs.

Type Occurrences Type Occurrences

struct 58.00 unsigned long 1.47
enum 9.50 int *() 1.46
other-types 8.86 enum *() 1.46
struct * 6.97 union 1.38
unsigned int 2.68 long 1.29
int 2.46 void *() 1.18
unsigned char 2.21 unsigned short 1.07

1641
initialization
syntax

initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list:
designationopt initializer
initializer-list , designationopt initializer

designation:
designator-list =

designator-list:
designator
designator-list designator

designator:
[ constant-expression ]
. identifier

v 1.1 January 30, 2008



CHANGES 1652

X

X
X

X
O

O

O

Q

Q
Q

Q

O

O O

Counting O’s in X distractors

R
es

po
ns

e 
tim

e 
(m

se
c)

0

400

1200

2000

2800

3600

2 4 6 8

Counting O’s in X distractors

• • 0 distractors
2 distractors

∆ ∆ 4 distractors

• • • •
•

• •
•

∆ ∆
∆ ∆

∆
∆

∆
∆

Counting O’s in Q distractors
2 4 6 8

0

3600 Counting O’s in Q distractors

• • •
•

•
•

•
•

∆
∆

∆

∆
∆

∆
∆

∆

Figure 1641.1: Average time (in milliseconds) taken for subjects to enumerate O’s in a background of X or Q distractors. Based
on Trick and Pylyshyn.[167]

Table 1641.1: Occurrence of object types, in block scope, whose declaration includes an initializer (as a percentage of the type of
all such declarations with initializers). Based on the translated form of this book’s benchmark programs. Usage information on
the types of all objects declared at file scope is given elsewhere (see Table 1348.2).

Type % Type %

struct * 39.5 long 2.6
int 22.6 char 2.5
other-types 9.1 unsigned short 2.4
unsigned int 4.5 unsigned char 1.5
union * 4.3 unsigned char * 1.4
char * 4.0 unsigned int * 1.2
unsigned long 3.4 enum 1.1

Table 1641.2: Occurrence of object types with internal linkage, at file scope, whose declaration includes an initializer (as a
percentage of the type of all such declarations with initializers). Based on the translated form of this book’s benchmark programs.
Usage information on the types of all objects declared at file scope is given elsewhere (see Table 1348.4).

Type % Type %

const char [] 22.5 char * 2.2
const struct 14.7 int [] 2.1
int 11.1 char [] 2.0
struct 10.4 unsigned char [] 1.7
other-types 10.4 void *() 1.3
struct [] 8.3 ( char * ) [] 1.3
struct * 2.9 int *() 1.2
( const char * const ) [] 2.9 const unsigned char [] 1.2
unsigned short [] 2.5 const short [] 1.2

1652
January 30, 2008 v 1.1



CHANGES1710

If an object that has automatic storage duration is not initialized explicitly, its value is indeterminate.object
value indeter-
minate

1707
statement
syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Usage
Of the approximately 2,204,000 statements in the visible form of the .c files 60.3% were expression-statements,
21.3% selection-statements, 15.0% jump-statements, and 3.4% iteration-statements. Of these
5.4% were labeled-statements.

1710A block allows a set of declarations and statements to be grouped into one syntactic unit.block

Initialized objects with no linkage

F
un

ct
io

n 
de

fin
iti

on
s

1

10

100

1,000

10,000

0 25 50 75 100

×

×
×

×
××

××
×
×××

×

×

×

×

×

×

×

×

×

×
×

×

×

×
×

×

×

×

×

×

×

×

××
×

×

×

×

×

×

×

×

××
×

×

×

×

×
×
××

×

×

×

×

×

×

×
×

×
×

×

×
×

×
×

×

××

×

×

××
×

×

×

××

×

×

×

×

×××

×
××

×

×

×

Initialized objects with internal linkage

T
ra

ns
la

tio
n 

un
its

0 25 50 75 100

×

×

×××
×

××
×
×
××

×
×

×
×

×

×

×

×

×

×

×
×

×

××

×

××

×

××××
×

×

×
×
× ×

×
×

×

×
×
×
××

×

×

×

××
××

×
×

×
××

×××
× ××

×

×
×
×
×

×

Figure 1652.1: Number of object declarations that include an initializer (as a percentage of all corresponding object declarations),
either within function definitions (functions that did not contain any object definitions were not included), or within translation
units and having internal linkage (while there are a number of ways of counting objects with external linkage, none seemed
appropriate and no usage information is given here). Based on the translated form of this book’s benchmark programs.

Number of idea units

C
on

fid
en

ce
 le

ve
l

-5

-3

-1

1

3

5

4 3 2 1

• • new sentences

•
•

•

•

× × old sentences×

×
×

×

Figure 1707.1: Subject confidence level for having previously seen a sentence containing different numbers of idea units. Based
on Bransford and Franks.[21]

v 1.1 January 30, 2008



CHANGES 1710

Romulus, the legendary founder of Rome, took the women of the Sabine by force.

1 (took, Romulus, women, by force)

2 (found, Romulus, Rome)

3 (legendary, Romulus)

4 (Sabine, women)

1 3

2

4

Cleopatra’s downfall lay in her foolish trust in the fickle political figures of the Roman world.

1 (because, α, β)

2 α → (fell down, Cleopatra)

3 β → (trust, Cleopatra, figures)

4 (foolish, trust)

5 (fickle, figures)

6 (political, figures)

7 (part of, figures, world)

8 (Roman, world)

1 3 4

2

5 6

7 8

Figure 1707.2: Two sentences, one containing four and the other eight propositions, and their propositional analyses. Based on
Kintsch and Keenan.[95]

Number of propositions

Ti
m

e 
(s

ec
s)

0

5

9

13

17

21

1 3 5 7 9

• Recalled
•

• •
•

• •

•
•

× Presented

×
×

× ×

× ×

Figure 1707.3: Reading time (in seconds) and recall time for sentences containing different numbers of propositions (straight
lines represent a least squares fit; for reading t = 6.37 + .94Ppres, and for recall t = 5.53 + 1.48Prec). Adapted from Kintsch
and Keenan.[95]

January 30, 2008 v 1.1



CHANGES1710

Sentences between referent and pronoun

Pe
rc

en
ta

ge
 c

or
re

ct

0

25

50

75

100

small (2-3) medium (4-5) large (6-7)

reading span 2

•

•

•

reading span 3

reading span 4

∆
∆

∆

reading span 5
× × ×

Figure 1707.4: Percentage of correct subject responses to the pronoun reference questions as a function of the number of
sentences between the pronoun and the referent noun. Plotted lines are various subject reading spans. Adapted from Daneman
and Carpenter.[49]

Reading span

Pe
rc

en
t c

or
re

ct

20

60

100

small intermediate large

Figure 1707.5: Percentage of correct answers as a function of subject’s reading span and the presence or absence of a sentence
boundary. Adapted from Daneman and Carpenter.[50]

v 1.1 January 30, 2008



CHANGES 1710

gun
ball

shoe

knife scissors

button ring

egg pen

ruler
coin

cup rubberband screw

eraser

cork
envelope

truck

flashlight
book

can

cufflink lock

thimble lighbulb
glue

cigarettes radio

screw
truck
glue
lock
radio

egg
cup
eraser
cork
shoe
ball
gun
ring
scissors

pen

knife
button
ruler
coin
bubberband

cigarettes
cufflink
lightbulb
thimble
can
flashlight
envelope
book

Figure 1707.6: Example of an object layout and the corresponding ordered tree for one of the subjects. Based on McNamara,
Hardy, and Hirtle.[120]

Line length difference

L
in

es

-100 -75 -50 -25 0 25 50 75 100

1

10

100

1,000

10,000

100,000
all statements

previous longer than 59 characters

previous shorter than 20 characters

Figure 1707.7: Visible difference in offset of last non-space character on a line between successive lines, in the visible form of
the .c files (horizontal tab characters were mapped to 8 space characters), for lines of various lengths, i.e., those whose previous
line contained 60 or more characters, and those whose previous line contains less than 20 characters. There are ten times fewer
lines sharing the same right offset as sharing the same left offset (see Figure 1707.8). Based on the visible form of the .c files.

January 30, 2008 v 1.1



CHANGES1710

Indentation difference

L
in

es

-100 -75 -50 -25 0 25 50 75 100

1

10

100

1,000

10,000

100,000

1,000,000

Figure 1707.8: Visible difference in relative indentation of first non-space character on a line between successive lines in the
visible form of the .c files (horizontal tab characters were mapped to 8 space characters). The smaller peaks around zero are
indentation differences of two characters. The wider spaced peaks have a separation of eight characters. Individual files had more
pronounced peaks. Based on the visible form of the .c files.

Statements

F
un

ct
io

n 
de

fin
iti

on
s

1

10

100

1,000

10,000

0 20 40 60 80

∆ ∆ expression-statement
• • selection-statement
. . compound-statement

jump-statement
× × iteration-statement

×

×
×
×
×
××

×××××
××××

××××××
×
×

×
×
××

×
×
××

×
×
×
×× ××××× × × × × × × × × ×

•
•
••••••••••••••••••••••••••••••

•••
•
••••••••

••
•
••

•
••

•
•••

••
••

•
•
•
•••

•

•
•

••

••

•••
•
•
•••

.
.
. .

. . .
.
. . . . . . . . . . .

. . . . . . . . .
. . .

. .
.
.
.

.

. .
.
.

.
. .

. . .
.
. . . .

.
.
.
.
.

.

.

.

.

.

.

.
. .

.

. .
. .

.

.

.

.
.
.

. .

. .

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆
∆∆∆∆∆∆∆∆∆∆∆∆∆

∆∆∆
∆∆

∆
∆

Figure 1707.9: Number of function definitions containing a given number of each kind of statement. Based on the translated
form of this book’s benchmark programs.

v 1.1 January 30, 2008



CHANGES 1713

Table 1710.1: Occurrence of constructs that terminated execution of a basic block during execution of PostgreSQL processing
the TPC-D benchmark. Adapted from Ramirez, Larriba-Pey, Navarro, Serrano, Torrellas, and Valero.[141]

Basic Block Type Static Count (thousand) Dynamic Count (billion)

Branch 54.026 (42.4%) 4.0 (50.2%)
Fall-through 31.120 (24.4%) 1.8 (22.4%)
Function return 32.052 (25.2%) 1.1 (13.7%)
Function call 10.228 ( 8 %) 1.1 (13.7%)

Table 1710.2: Mean number of machine instructions executed per basic block (i.e., total number of instructions executed in a
function divided by the total number of basic blocks executed in that function) for a variety of SPEC benchmark programs. Leaf
refers to functions that do not call any other functions, while Non-Leaf refers to functions that contain calls to other functions.
Based on Calder, Grunwald, and Zorn.[27]

Program Leaf Non-Leaf Program Leaf Non-Leaf

burg 6.8 4.9 eqntott 9.1 5.4
ditroff 6.8 4.7 espresso 5.0 5.1
tex 10.4 8.5 gcc 5.2 5.7
xfig 4.8 5.3 li 2.9 5.7
xtex 7.3 5.8 sc 3.5 4.2
compress 18.4 5.7 Mean 7.3 5.5

Usage

Usage information on block nesting is discussed elsewhere. 277 limit
block nesting

1712 A full expression is an expression that is not part of another expression or of a declarator. full expression

1713 Each of the following is a full expression:

compound-statements

F
un

ct
io

n 
de

fin
iti

on
s

1

10

100

1,000

10,000

0 25 50 75 100

•
•
••
•••

••••••••••••••••••••••••
•••

•
•

•

••
•
•

•
••
••••

••••
•
•
•
•
•

•

•

•

•

•

•

•
••
•

••
••
•

•

•

•
•
•

••

••
•
•
•
•

••
•

•
••

••

•

•
•

•

•
•

•

•

•

••

Figure 1710.1: Number of function definitions containing a given number of compound-statements. Based on the translated
form of this book’s benchmark programs.

January 30, 2008 v 1.1



CHANGES1727

Operators in expression

E
xp

re
ss

io
ns

0 5 10 15 20

1

10

100

1,000

10,000

100,000

1,000,000
. . Unary operators.

.

.

.
.

. .
.

.
. . . . . .

.
.

. .
.

.

• • Arithmetic operators
•

•
•

•
•

•
•

• •
• • • •

• • • • •
•

•

Bitwise/Logical operators
× × Equality/Relational operators

×
×

×
×

×
× ×

× × × × × × × ×
× × ×

×
× ×

. . Sum of these operators

. .

.
.

. .
. .

. .
. .

. . . .
. .

. . .

Figure 1712.1: Number of expressions containing a given number of various kinds of operator, plus a given number of all of
these kinds of operators. Based on the visible form of the .c files.

Table 1713.1: Occurrence of full expressions in various contexts (as a percentage of all full expressions). Based on the translated
form of this book’s benchmark programs.

Context of Full Expression Occurrence Context of Full Expression Occurrence

expression statement 65.9 for expr-1 1.6
if controlling expression 16.4 for controlling expression 1.5
return expression 6.2 for clause-1 1.5
object declaration initializer 4.2 switch controlling expression 0.6
while controlling expression 2.1

1722
labeled state-
ments
syntax

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

Usage

In the translated form of this book’s benchmark programs 2% of labels were not the destination of any goto
statement. Usage information on goto statements is given elsewhere.

jump
statement

causes jump to

1783

Table 1722.1: Percentage of function definitions containing a given number of labeled statements (other than a case or default
label). Based on the visible form of the .c files.

Labels % Functions Labels % Functions

1 3.5 3 0.3
2 0.9 4 0.1

1727Labels in themselves do not alter the flow of control, which continues unimpeded across them.case
fall through

v 1.1 January 30, 2008



CHANGES 1731

Table 1727.1: Common token pairs involving a case or default label. Based on the visible form of the .c files. Almost all of
the sequences { case occur immediately after the controlling expression of the switch statement.

Token Sequence % Occurrence First Token % Occurrence of Second Token

; default 0.4 81.4
; case 2.1 52.1
: case 15.5 22.1
{ case 2.6 15.0
} case 1.3 7.3
: default 0.5 5.7
#endif default 0.8 4.4

1729
compound state-

ment
syntax

compound-statement:
{ block-item-listopt }

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
statement

Usage

Usage information on the number of declarations occurring in nested blocks is given elsewhere (see Fig-
ure 408.1).

1731
null statement

syntax
expres-

sion statement
syntaxexpression-statement:

expressionopt ;

Physical lines

co
m

po
un

d-
st

at
em

en
ts

1

10

100

1,000

10,000

1 10 100

×

×
×

× × × ×××××××××××××××××××××××××××××××××××××××××××××××××××××
××
×
×××××××××

×××××
××
××
××
×××
××
×××
×
××
××
××××
×
×
××
××
×
××
×

××××××××××
×
×

×

××
×
×××××

×
×
×
×××

Figure 1729.1: Number of compound-statements containing the given number of physical lines (including the opening and
closing braces and any nested compound-statements, but excluding the lines between the braces denoting the start/end of the
function definition). Based on the translated form of this book’s benchmark programs.

January 30, 2008 v 1.1



CHANGES1739

Table 1731.1: Occurrence of the most common forms of expression statement (as a percentage of all expression statements).
Where object is a reference to a single object, which may be an identifier, a member (e.g., s.m, s->m->n, or a[expr]),
integer-constant is an integer constant expression, and expression denotes expressions that contain arithmetic and shift
operators. Based on the visible form of the .c files.

Form of expression-statement % Form of expression-statement %

function-call 37 object = expression 4
object = object 16 object v++ 2
object = function-call 10 expression 1
object = constant 7 other-expr-stmt 22

1739
selec-
tion statement
syntax

selection-statement:
if ( expression ) statement
if ( expression ) statement else statement
switch ( expression ) statement

Table 1739.1: Dynamic breakdown of non-loop branches for programs in SPEC89. % of All Branches is the percentage of all
branches that are non-loop branches. Heuristics are the results of using the heuristics for predicting the target successor of each
non-loop branch, Perfect the results for the perfect predictor, Random the results for predicting each non-loop branch randomly.
Big is the number of non-loop branches in the program contributing more than 5% of all dynamic non-loop branches (and in
parenthesis as a percentage of non-loop branches). Based on Ball and Larus.[14]

Program % of All
Branches

Heuristics Perfect Random Big
(%)

Program % of All
Branches

Heuristics Perfect Random Big
(%)

gcc 73 37 11 50 0 ( 0) poly 20 40 3 31 3 (54)
lcc 71 32 12 52 1 (13) fpppp 86 42 9 41 0 ( 0)
qpt 70 26 9 52 0 ( 0) costScale 71 29 21 49 6 (52)
compress 66 40 18 66 6 (69) doduc 52 33 3 49 0 ( 0)
xlisp 62 28 7 50 0 ( 0) tomcatv 38 2 0 50 2 (98)
addalg 52 43 30 43 7 (67) dcg 21 15 4 46 4 (51)
ghostview 52 16 4 47 4 (53) spice2g6 21 36 8 52 2 (27)
eqntott 49 50 25 50 2 (92) sgefat 18 26 8 61 8 (73)
rn 48 34 1 51 3 (25) dnasa7 10 32 4 55 4 (58)
grep 44 1 0 3 3 (96) matrix300 4 33 0 66 3 (99)
congress 40 28 3 57 2 (10) Mean 29 10 49
espresso 37 26 13 42 3 (24) Std.Dev. 12 8 13
awk 29 14 3 57 4 (29)

Table 1739.2: Percentage of correct responses given to the four kinds of questions. Adapted from Bell and Johnson-Laird.[15]

Kind of Question Correct ’yes’ Response Correct ’no’ Response

is possible 91% 65%
is necessary 71% 81%

v 1.1 January 30, 2008



CHANGES 1739

Table 1739.3: Percentage of subjects accepting that the stated conclusion could be logically deduced from the given premises.
Based on Evans, Barston, and Pollard.[66]

Status-context Example Conclusion Accepted

Valid-believable
No Police dogs are vicious
Some highly trained dogs are vicious
Therefore, some highly trained dogs are not police dogs 88%

Valid-unbelievable
No nutritional things are inexpensive
Some vitamin tablets are inexpensive
Therefore, some vitamin tablets are not nutritional things 56%

Invalid-believable
No addictive things are inexpensive
Some cigarettes are inexpensive
Therefore, some addictive things are not cigarettes 72%

Invalid-unbelievable
No millionaires are hard workers
Some rich people are hard workers
Therefore, some millionaires are not rich people 13%

Table 1739.4: Properties of the two systems of thinking. Based on Stanovich.[155]

System 1 System 2

Unconscious Conscious
Automatic Controlled
Associative Rule-based
Heuristic processing Analytic processing
Undemanding of cognitive capacity Demanding of cognitive capacity
Relatively fast Relatively slow
Acquisition by biology, exposure, and
personal experience

Acquisition by cultural and formal training

Highly contextualized Decontextualized
Conversational and socialized Asocial
Independent of general intelligence Correlated with general intelligence

Table 1739.5: Eight sets of premises describing the same relative ordering between A, B, and C (peoples names were used in the
study) in different ways, followed by the percentage of subjects giving the correct answer. Adapted from De Soto, London, and
Handel.[52]

Premises Percentage Correct
Response

Premises Percentage Correct
Response

1 A is better than B 5 A is better than B
B is better than C 60.5 C is worse than B 61.8

2 B is better than C 6 C is worse than B
A is better than B 52.8 A is better than B 57.0

3 B is worse than A 7 B is worse than A
C is worse than B 50.0 B is better than C 41.5

4 C is worse than B 8 B is better than C
B is worse than A 42.5 B is worse than A 38.3

January 30, 2008 v 1.1



CHANGES1739

Table 1739.6: Percentage yes responses to various forms of questions (based on 238 responses). Based on Sloman, and
Lagnado.[151]

Question Causal Conditional

D holds? 80% 57%
A holds? 79% 36%

Table 1739.7: Occurrence of the most common conditional sentence types in speech (266 conditionals from a 63,746 word
corpus) and writing (948 conditionals from 357,249 word corpus). In the notation if + x, y: x is the condition (which might,
for instance, be in the past tense) and y can be thought of as the then part (which might, for instance, use one of the words
would/could/might, or be in the present tense). Adapted from Celce-Murcia.[34]

Structure Speech Writing

If + present, present 19.2 16.5
If + present, (will/be going to) 10.9 12.5
If + past, (would/might/could) 10.2 10.0
If + present, (should/must/can/may) 9.0 12.1
If + (were/were to), (would/could/might) 8.6 6.0
If + (had/have +en), (would/could/might) have 3.8 3.3
If + present, (would/could/might) 2.6 6.1

Table 1739.8: Occurrence of various kinds of if statement controlling expressions (as a percentage of all if statements).
Where object is a reference to a single object, which may be an identifier, a member (e.g., s.m, s->m->n, or a[expr]),
integer-constant is an integer constant expression, and expression represents all other expressions. Based on the visible form
of the .c files.

Abstract Form of Control Expression % Abstract Form of Control Expression %

others 32.4 ! function-call 3.8
object 15.5 object < integer-constant 2.2

object == object 8.9 object > integer-constant 1.8
! object 7.4 function-call == object 1.6

function-call 7.4 object > object 1.4
expression 5.7 object != integer-constant 1.3

object != object 4.2 function-call == integer-constant 1.2
object == integer-constant 4.0 object < object 1.1

Table 1739.9: Occurrence of various kinds of switch statement controlling expressions (as a percentage of all switch statements).
Where object is a reference to a single object, which may be an identifier, a member (e.g., s.m, s->m->n, or a[expr]),
integer-constant is an integer constant expression, and expression denotes expressions that contain arithmetic and shift
operators. Based on the visible form of the .c files.

Abstract Form of Control Expression %

object 75.3
function-call 14.2
expression 5.2

others 3.3
*v object 2.0

v 1.1 January 30, 2008



CHANGES 1740

selection-statements

F
un

ct
io

n 
de

fin
iti

on
s

1

10

100

1,000

10,000

0 25 50 75 100

× × if
• • else

switch
×
×
××××××××××××××××××××××××××××××××××××

××××××
×
××××

×

××××××

××
××××

×

××

×

×
×
×

×
×
×××

×
×
×××

××
×
×××

×
×
×
×××

×
×

×××
×

•

•
•
•
•••

•••
•••••••••••••

•

•
••••••

••

•
•
••
••

•
•

•

•
•
• • ••

•
• • • •

Figure 1739.1: Number of function definitions containing a given number of selection-statements. Based on the translated
form of this book’s benchmark programs.

Nesting depth

se
le

ct
io

n-
st

at
em

en
ts

1 5 10 15

1

10

100

1,000

10,000

100,000
× × .c files×

×
×

×
×

×
× ×

× ×
× × × ×

×

• • Embedded
•

•
• • • •

• •
• •

Figure 1739.2: Number of selection-statements having a given maximum nesting level for embedded C[60] (whose data was
multiplied by a constant to allow comparison; the data for nesting depth 5 was interpolated from the adjacent points). Based on
the visible form of the .c files.

Table 1739.10: Occurrence of equality, relational, and logical operators in the conditional expression of an if statement (as a
percentage of all such controlling expressions and as a percentage of all occurrences each operator in the source). Based on
the visible form of the .c files. The percentage of controlling expressions may not sum to 100% because more than one of the
operators occurs in the same expression.

Operator % Controlling
Expression

% Occurrence
of Operator

Operator % Controlling
Expression

% Occurrence
of Operator

== 31.7 88.6 >= 3.5 76.8
!= 14.1 79.7 no relational/equality 47.5 —
< 6.9 45.6 || 9.6 85.9
<= 1.9 68.6 && 14.5 82.3
> 3.5 84.9 no logical operators 84.2 —

1740 A selection statement selects among a set of statements depending on the value of a controlling expression. controlling
expression

if statementUsage
In the translated form of this book’s benchmark programs 1.3% of selection-statements and 4% of
iteration-statements have a controlling expression that is a constant expression. Use of simple, non-
iterative, flow analysis enables a further 0.6% of all controlling expressions to be evaluated to a constant

January 30, 2008 v 1.1



CHANGES1748

expression at translation time.

1745In the else form, the second substatement is executed if the expression compares equal to 0.else

Usage

In the visible form of the .c files 21.5% of if statements have an else form. (Counting all forms of if
supported by the preprocessor, with #elif counting as both an if and an else, there is an #else form in
25.0% of cases.)

1748The controlling expression of a switch statement shall have integer type.switch
statement

case value density

sw
it

ch
st

at
em

en
ts

0 20 40 60 80 100

1

10

100

1,000

• no default
× with default
∆ embedded

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

×

×
×

×

×

× ×
×

×

×

×

×

×

×

×

×
×

×

×

× × × × × ×
×

∆
∆

∆ ∆
∆

∆
∆

∆
∆

∆

∆

∆

∆

∆

∆
∆ ∆ ∆

∆

∆

case value span

1 10 100 1000

•

•

••

•

•

•
•

••

•

•

•

•

••

•

•

••

•

•

•

•

•

••

•

•

•

•

••

•

•

•

••

•

•

••

•

•

•

•

••• •

•

•••

•

•

•

•

•• ••

••
•
•

•

•

•

•
•

• •

•

•

•

•

••

•
•

•

•

•
•

•

•

•

•••

•

••

•

•

••

•

•

•

•

•

•

•

••••

•

•

•

•

•••

••

••

•

•

× ×

×

× ××
×

×

×
×
××

× ×
××
×

×

×

×

××

×

××
×
×

×
××

×

××

×

×
×

×
×

×

×

×××
×
××

×

××

×

×
×
×
×

×
×
×

×

×

×
××

×

×

×××
×

×

×

××
×××
×

×

×

×

××
×
×××

×

××
×
×

×

×
×

×

×
×
×

×

×
×

×

×

×

×

×

××

×

×
××

×
×

××

×

×

×

×
×

×

××
×

×

×

××

×

×

×

×

×

×

×
××××

×

××

×

××

×

×

×

××

×

×
×

×

×
×

×

×

×
×
×

×

×

×

××

×

××

×

×

×

××
×

×

×
×

××

×

×

×
×

×

×

×

×

×
×

×

×
×

×
×× ×
×

×

×

×

××
××

×
×

×××
×

×

×

×

×

×
× ×

×××
×
×

×

×
×
×

×

×

Figure 1748.1: Density of case label values (calculated as (maximum case label value minus minimum case label value minus
one) divided by the number of case labels associated with a switch statement) and span of case label values (calculated as
(maximum case label value minus minimum case label value minus one)). Based on the translated form of this book’s benchmark
programs and embedded results from Engblom[60] (which were scaled, i.e., multiplied by a constant, to allow comparison). The
no default results were scaled so that the total count of switch statements matched those that included a default label.

Statements

ca
se

/d
ef

au
lt

la
be

ls

1

10

100

1,000

10,000

1 10 100 1000

• •
•

• •
• • ••••••••••••••••••••••••••••••••

••
••••••
••
•
••
•
•
••
••
••
•
••
•••••

•

•••

•

••••
•
•

•
•
•
•
•

•

•
••
••

•

•
••
•
•

•
••
•

•

••
•
•
•

••
•••
••
•
••
••
••••

•

•

••

•
•
••

•

•

•

•
•
•

•

•

•
•
•
••
••••
•
•

••••••••••
•
••••
•
•••

•

••••••••••• ••••••••••••• • • •

Figure 1748.2: Number of case/default labels having s given number of statements following them (statements from any
nested switch statements did not contribute towards the count of a label). Based on the visible form of the .c files.

v 1.1 January 30, 2008



CHANGES 1763

Table 1748.1: Occurrence of switch statements having a controlling expression of the given type (as a percentage of all switch
statements). Based on the translated form of this book’s benchmark programs.

Type % Type %

int 29.5 bit-field 3.1
unsigned long 18.7 unsigned short 2.8
enum 14.6 short 2.5
unsigned char 12.4 long 0.9
unsigned int 10.0 other-types 0.2
char 5.1

1751 There may be at most one default label in a switch statement. default label
at most one

Usage

In the visible form of the .c files, 72.8% of switch statements contain a default label.

1753 A switch statement causes control to jump to, into, or past the statement that is the switch body, depending switch statement
causes jumpon the value of a controlling expression, and on the presence of a default label and the values of any case

labels on or in the switch body.

Table 1753.1: Performance comparison (in seconds) of some implementation techniques for a series of if statements (contained
in a loop that iterated 10,000,000 times) using (1) linear search (LS), or (2) indirect jump (IJ), for a variety of processors in the
SPARC family. br is the average number of branches per loop iteration. Based on Uh and Whalley.[170]

Processor Implementation 2.5br LS 4.5br LS 8.5br LS 2.5br IJ 4.5br IJ 8.5br IJ

SPARCstation-IPC 3.82 5.53 8.82 2.61 2.71 2.76
SPARCstation-5 1.03 1.65 2.74 0.63 0.76 0.76
SPARCstation-20 0.93 1.60 2.65 0.87 0.93 0.94
UltraSPARC-1 0.50 1.16 1.56 1.50 1.51 1.51

1763
iteration state-

ment
syntax

iteration-statement:
while ( expression ) statement
do statement while ( expression ) ;
for ( expressionopt ; expressionopt ; expressionopt ) statement
for ( declaration expressionopt ; expressionopt ) statement

Usage

A study by Bodík, Gupta, and Soffa[19] found that 11.3% of the expressions in SPEC95 were loop invariant.

January 30, 2008 v 1.1



CHANGES1763

iteration-statements
F

un
ct

io
n 

de
fin

iti
on

s

1

10

100

1,000

10,000

0 5 10 15 20 25

× × while
• • for

do

×

×

×
×

×
× ×

× ×
× ×

×
×

×

×
×

× × × × ×

•

•

•
•

•
• •

• •
• • •

• •
• • • • •

•
•

• •

Figure 1763.1: Number of function definitions containing a given number of iteration-statements. Based on the translated
form of this book’s benchmark programs.

Maximum nesting depth

F
un

ct
io

n 
de

fin
iti

on
s

0 1 2 3 4 5

1

10

100

1,000

10,000

100,000 × × .c files×
×

×

×

×

×
×

• • Embedded

•

•

•

•

Figure 1763.2: Number of functions containing iteration-statements nested to the given maximum nesting level; for
embedded C[60] (whose data was multiplied by a constant to allow comparison) and the visible form of the .c files (zero nesting
depth denotes functions not containing any iteration-statements).

Table 1763.1: Occurrence of various kinds of for statement controlling expressions (as a percentage of all such expressions).
Where object is a reference to a single object, which may be an identifier, a member (e.g., s.m, s->m->n, or a[expr]); assignment
is an assignment expression, integer-constant is an integer constant expression, and expression denotes expressions that
contain arithmetic and shift operators. Based on the visible form of the .c files.

Abstract Form of for loop header %

assignment ; identifier < identifier ; identifier v++ 33.2
assignment ; identifier < integer-constant ; identifier v++ 11.3

assignment ; identifier ; assignment 7.0
assignment ; identifier < expression ; identifier v++ 3.3
assignment ; identifier < identifier ; ++v identifier 2.7

; ; 2.5
assignment ; identifier != identifier ; assignment 2.5
assignment ; identifier <= identifier ; identifier v++ 2.2

assignment ; identifier >= integer-constant ; identifier v-- 1.6
assignment ; identifier < function-call ; identifier v++ 1.4

assignment ; identifier < identifier ; identifier v++ , identifier v++ 1.4
others 31.1

v 1.1 January 30, 2008



CHANGES 1782

Possible loop control variables

fo
r

lo
op

 h
ea

de
rs

0 1 3 5 10 15

1

10

100

1,000

10,000 expression-2
× × expression-3

×
×

×

×

×

• • clause-1

•
•

•

•

Figure 1774.1: Number of possible loop control variables appearing in expression-2 (square-box) after filtering against the
objects appearing in expression-3 (cross) and after filtering against the objects appearing in clause-1 (bullet). Based on the
visible form of the .c files.

Table 1763.2: Occurrence of various kinds of while statement controlling expressions (as a percentage of all while statements).
Where object is a reference to a single object, which may be an identifier, a member (e.g., s.m, s->m->n, or a[expr]); assignment
is an assignment expression, integer-constant is an integer constant expression, and expression denotes expressions that
contain arithmetic and shift operators. Based on the visible form of the .c files.

Abstract Form of Control Expression % Abstract Form of Control Expression %

others 43.5 expression 2.2
object 12.2 *v object 2.0

object != object 7.0 assignment 1.8
integer-constant 6.2 ! object 1.6

object < object 4.7 ! function-call 1.3
function-call 4.4 object != integer-constant 1.2

object > integer-constant 4.0 object v-- > integer-constant 1.1
object v-- 3.2 ! expression 1.0

assignment != object 2.4

1774 The statement for
statement

for ( clause-1 ; expression-2 ; expression-3 ) statement

behaves as follows:

Table 1774.1: Occurrence of sequences of components omitted from a for statement header (as a percentage of all for
statements). Based on the visible form of the .c files.

Components Omitted %

clause-1 3.8
clause-1 expr-2 0.1
clause-1 expr-2 expr-3 2.5
clause-1 expr-3 0.1
expr-2 0.8
expr-2 expr-3 0.2
expr-3 1.6

1782
jump statement

syntax

jump-statement:

January 30, 2008 v 1.1



CHANGES1782

goto identifier ;
continue ;

break ;
return expressionopt ;

Usage

Numbers such as those given in Table 1782.1 and Table 1782.2 depend on the optimizations performed by
an implementation. For instance, unrolling a frequently executed loop will reduce the percentage of branch
instructions.

jump-statements

F
un

ct
io

n 
de

fin
iti

on
s

1

10

100

1,000

10,000

100,000

0 5 10 15 20 25

× × return
• • break

continue
∆ ∆ goto

•

•
• • •

• •
• • • •

•
• •

• • •
• • • • • • • •

• •

× ×
×

×
×

×
× ×

× × × × × × × × × × × ×
× × × × × × ×

∆

∆ ∆
∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆
∆

∆ ∆
∆ ∆ ∆ ∆

∆

∆
∆ ∆

∆

∆

∆ ∆

Figure 1782.1: Number of function definitions containing a given number of jump-statements. Based on the translated form of
this book’s benchmark programs.

breaks or continues

it
er

at
io

n-
st

at
em

en
ts

0 5 10 15 20

1

10

100

1,000

10,000

100,000 × × break×

×

×
×

×
×

×
× ×

× ×
×

× × ×
×

×
×

• • continue
•

•

•
•

•
• • •

•
•

•
• • • •

•
•

•
•

Figure 1782.2: Number of iteration-statement containing the given number of break and continue Based on the visible
form of the .c files.

v 1.1 January 30, 2008



CHANGES 1810

Table 1782.1: Dynamic occurrence of different kinds of instructions that can change the flow of control. %Instructions Altering
Control Flow is expressed as a percentage of all executed instructions. All but the last row are expressed as percentages of
these, control flow altering, instructions only. The kinds of instructions that change control flow are: conditional branches CB,
unconditional branches UB, indirect procedure calls IC, procedure calls PC, procedure returns Ret, and other breaks Oth (e.g.,
signals and switch statements). Instructions between branches is the mean number of instructions between conditional branches.
Based on Calder, Grunwald, and Zorn.[27]

Program %Instructions
Altering Control
Flow

%CB %UB %IC %PC %Ret %Oth %Conditional
Branch Taken

Instructions
Between
Branches

burg 17.1 74.1 6.9 0.0 9.5 9.5 0.0 68.8 7.9
ditroff 17.5 76.3 4.2 0.1 9.7 9.8 0.0 58.1 7.5
tex 10.0 75.9 10.7 0.0 5.8 5.8 1.9 57.5 13.2
xfig 17.5 73.6 7.7 0.6 8.6 9.2 0.3 54.8 7.8
xtex 14.1 78.2 8.5 0.2 6.0 6.2 1.0 53.3 9.1
compress 13.9 88.5 7.6 0.0 2.0 2.0 0.0 68.3 8.1
eqntott 11.5 93.5 2.1 1.5 0.7 2.2 0.0 90.3 9.3
espresso 17.1 93.2 1.9 0.1 2.3 2.4 0.1 61.9 6.3
gcc 16.0 78.9 7.4 0.4 6.1 6.5 0.8 59.4 7.9
li 17.7 63.9 8.7 0.4 12.9 13.2 0.9 49.3 8.9
sc 22.3 83.5 3.9 0.0 6.3 6.3 0.0 64.3 5.4
Mean 15.9 80.0 6.3 0.3 6.3 6.6 0.5 62.4 8.3

Table 1782.2: Number of static conditional branches sites that are responsible for the given quantile percentage of dynamically
executed conditional branches. For instance, 19 conditional branch sites are responsible for over 50% of the dynamically executed
branches executed by burg. Static count is the total number of conditional branch instructions in the program image. Of the
17,565 static branch sites, 69 branches account for the execution of 50% of all dynamic conditional branches. Not all branches
will be executed during each program execution because many branches are only encountered during error conditions, or may
reside in unreachable or unused code. Based on Calder, Grunwald, and Zorn.[27]

Program 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99% 100% Static count

burg 1 3 5 9 19 33 58 95 135 162 268 859 1,766
ditroff 3 11 19 28 38 50 64 91 132 201 359 867 1,974
tex 3 7 15 26 39 58 89 139 259 416 788 2,369 6,050
xfig 8 31 74 138 230 356 538 814 1,441 2,060 3,352 7,476 25,224
xtex 2 8 15 22 36 63 104 225 644 1,187 2,647 6,325 21,597
compress 1 2 2 3 4 5 6 8 12 14 16 230 1,124
eqntott 1 1 1 2 2 2 2 3 14 42 72 466 1,536
espresso 4 10 19 30 44 63 88 121 163 221 470 1,737 4,568
gcc 13 38 77 143 245 405 641 991 1,612 2,309 3,724 7,639 16,294
li 2 4 7 11 16 22 29 38 52 80 128 557 2,428
sc 2 3 4 6 9 16 30 47 76 135 353 1,465 4,478
Mean 3 10 21 38 62 97 149 233 412 620 1,107 2,726 7,912

1783 A jump statement causes an unconditional jump to another place. jump statement
causes jump to

Usage
A study by on Gellerich, Kosiol, and Ploedereder[72] analyzed goto usage in Ada and C. In the translated
form of this book’s benchmark programs 20.6% of goto statements jumped to a label that occurred textually
before them in the source code.

1800 A return statement without an expression shall only appear in a function whose return type is void. return
without ex-

pressionUsage
The translated form of this book’s benchmark programs contained 19 instances of a return statement without
an expression appearing in a function whose return type was void.

January 30, 2008 v 1.1



CHANGES1821

Line difference

go
to

st
at

em
en

ts

-300 -200 -100 0 100 200 300

1

10

100

1,000

•••••••••••

•
•

••••••

••

•

••

•

••••••

•

•••••••••

•

•••••

•

•••

•
•

••••

•

•••••

•

•
•

••

•

••

•
•

•

••

•

•

•

•

•

•

••
•
•
•
••••

••
•
•
•

•••••••

•

•

••

••

•
•
••

•

•
•
•

•
•
•
•

•••

•••

•••
•

•

•

•

•
•
•

•

••
•••

•

•

•

•••

•

••

•

•
•
•

•

•

••

•

•

•
•

••
•

•

•
•
•

•

•
•
•

•

•

•

•

•
•

•••

•

•

•
•
•••
•
•
•
••

•

•

•

•••

•
•

•

•••
••

••

•

••
••
••

•
•

••

••
•
••

•
••
••
•
•

••
••
••••

•

••
••

•

•

•

•

•

•

•

•
•
••
•
•
•
•••
••••••••••••••••

•
•••••••••••••

•
•
••
•
••
••
••••••••••

••••
•
•
••••
••
••
•••••••
•
••
••
••
•
••

••
•••
•
•
•

•••
•

•••
•••••
•••
•
••
•

•

•
••
••••
••
•

•
•••
••
•
••
••
•
•

••

•••
•

•

•
••

•
••
•

•

••
•

••
•

•

•

••
•
•

•

•
•
•
••
•

••
•••
•

•
•
••

••

••

•
•
••

•
•

•
•
•

•

•

•

•••
••
•
•

•

•

•
•
•
•

•

•••
•

•

•
•
••

•

••
•

••

••
•

•

•

•

••

•
•
•

••

•••
•
••

•
••
••
•

•

•

•

•
•

•

•
•••
•
••
•
•
•
•

•••

•

•

•

•

•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

Figure 1783.1: Number of goto statements having a given number of visible source lines between a goto statement and its
destination label (negative values denote backward jumps). Based on the translated form of this book’s benchmark programs.

Scope nesting level

O
cc

ur
re

nc
es

1 5 10 15

1

10

100

1,000

× × goto statements

• • labeled statements
× ×

× ×
×

×
×

×
× ×

×

×
×

× ×

•

•
•

•
•

•

•

• •
•

Scope nesting difference

-10 -5 0

× ×

×

×
×

×

×
×

×
×

×

× ×

×

×
× ×

Figure 1783.2: Number of goto statements and labels having a given scope nesting level (nesting level 1 is the outermost block
of a function definition), and on the right the difference in scope levels between a goto statement and its corresponding labeled
statement (negative values denote a jump to a less nested scope). Based on the translated form of this book’s benchmark programs.

1810
translation unit
syntax
external dec-
laration
syntax translation-unit:

external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Usage
On a large development project it is possible that more than one person will write some set of functions
performing similar operations. This duplication of functionality occurs at a higher-level than copying and
reusing sequences of statements (discussed elsewhere), it is a concept that is being duplicated. Marcus andduplicate

code
Maletic[116] used latent semantic analysis to identify related source files (what they called concept clones).latent seman-

tic analysis
Source code identifiers and words in comments were used as input to the indexing process. An analysis of
the Mozilla source code highlighted two different implementations of linked list functions and four files that
contained their own implementations.

1821
function definition
syntax

v 1.1 January 30, 2008



CHANGES 1821

external-declarations

T
ra

ns
la

tio
n 

un
its

0 500 1,000

1

10

100

1,000 ×

×
×

× ×
× ×

×
×

×
×

×
× ×

×
× × × ×

× ×

×
×

×

×

×

function-definitions

0 25 50 75 100

×
×××××××××××××

××××××××××××××
×
×
××
×
××××××

×
××××

×
×

××
×

×

×

×

×
×
××
×

××

×

×××
×

×
×
××
×
×

×

××
××

×
×

××

××

××××
×
××××

Figure 1810.1: Number of translation units containing a given number of external-declarations and
function-definitions declarations (rounded to the nearest fifty and excluding identifiers declared in any system
headers that are #included). Based on the translated form of this book’s benchmark programs.

Function definitions

T
ra

ns
la

tio
n 

un
its

1

10

100

1,000

0 25 50 75 100

×
×××××××××××

××
×××

×××××××××××
×
×
××
×
××××

××
×
×××

×
×
×

××
×

×

×

×

×
×
××
×

××

×

×××
×

×
×
××
×
×

×

××
××

×
×

××

××

××××
×
××××

Percentage called

0 25 50 75 100

•

•

•

•
••
•

•

•
••

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

••

•

•
•

•

•
•

•

•

•

•

•••
••

•

•

••
•

•

•

•

•
•

•

•

•
•

•

•
•

•

•

•
•

•
•

•
•

•

•

••

•
•

•
•

•

•

•

•

•••

•

•

•

•
•
•
•

••

•

•

Figure 1810.2: Number of translation units containing a given number of function definitions and percentage of functions that
are called within the translation unit that defines them. Based on the translated form of this book’s benchmark programs.

function-definition:

declaration-specifiers declarator declaration-listopt compound-statement
declaration-list:

declaration
declaration-list declaration

Table 1821.1: Probability of subjects recalling or recognizing typical or atypical actions present in stories read to them, at two
time intervals (30 minutes and 1 week) after hearing them. Based on Graesser, Woll, Kowalski, and Smith.[73]

Memory Test Typical (30 mins) Atypical (30 mins) Typical (1 week) Atypical (1 week)

Recall (correct) 0.34 0.32 0.21 0.04
Recall (incorrect) 0.17 0.00 0.15 0.00
Recognition (correct) 0.79 0.79 0.80 0.60
Recognition (incorrect) 0.59 0.11 0.69 0.26

January 30, 2008 v 1.1



CHANGES1821

Story

Setting

Event *

Event 1 Then

Event 2

And

State 3

Event
Structure

Episode

Begin
ning

Event *

Event 4 Cause

Event 5

Develop
ment

Complex
Reaction

Simple
Reaction

Internal
Event 6

Goal

Internal
State 7

Cause

Goal
Path

Attempt

Event *

Event 8

Outcome

Event *

Event 9 Cause

Event 10

Ending

Emphasis

State 11

Figure 1821.1: Parse, using the Story grammar, of the tale of a dog and piece of meat. Adapted from Mandler and Johnson.[115]

Thematic relatedness

Pe
rc

en
ta

ge
 e

rr
or

neutral low medium high

0

10

20

30

40 2 days

before

famous

n

n

n

n

after
∆ ∆

∆

∆
fictitious

•

•
•

•

Thematic relatedness

40

neutral low medium high

1 week

before

famous

n

n

n

n

after

∆

∆
∆ ∆

fictitious•
•

•

•

Figure 1821.2: Percentage of false-positive recognition errors for biographies having varying degrees of thematic relatedness to
the famous person, in before, after, famous, and fictitious groups. Based on Dooling and Christiaansen.[57]

v 1.1 January 30, 2008



CHANGES 1821

Source files

N
um

be
r 

of
 d

up
lic

at
es

1 5 10 15 20

1

10

100

1,000

10,000

× × 4 or more lines duplicated
• • 8 or more lines duplicated

× ×

×
×

×
× × × × × × × × × × × × × × × ×

• •

•

•
•

•
•

•
•

• • • •
•

•
•

•
•

•
•

Figure 1821.3: Number of instances of duplicate physical lines, where a given duplicate line sequence is contained within a
single source file or more than one source file (ignoring comments and blank lines) for sequences having at least 4 and 8 lines.
Data created by processing the .c files (for each of the book’s program’s complete source tree) using Simian.[144]

Table 1821.2: Number of clones (the same sequence of 30 or more tokens, with all identifiers treated as equivalent) detected by
CCFinder between three different operating systems (Linux, FreeBSD, and NetBSD). Adapted from Kamiya, Kusumoto, and
Inoue.[93]

O/S pairs Number of
Clone Pairs

% of Lines Included
in a Clone

% of Files Contain-
ing a Clone

FreeBSD/Linux 1,091 FreeBSD ( 0.8)
Linux ( 0.9)

FreeBSD ( 3.1)
Linux ( 4.6)

FreeBSD/NetBSD 25,621 FreeBSD (18.6)
NetBSD (15.2)

FreeBSD (40.1)
NetBSD (36.1)

Linux/NetBSD 1,000 Linux ( 0.6) NetBSD
( 0.6)

Linux ( 3.3) NetBSD
( 2.1)

Usage

A study of over 3,000 C functions by Harrold, Jones, and Rothermel[79] found that the size of a functions
control dependency graph was linear in the number of statements (the theoretical worst-case is quadratic in
the number of statements).

A study by Neamtiu, Foster, and Hicks[129] of the release history of a number of large C programs, over
3-4 years (and a total of 43 updated releases), found that in 81% of releases one or more existing function
definitions had their argument signature changed, while one or more function definitions had their return
type changed in 42% of releases and one or more function definitions had their name changed in 49% of
releases.[128]

Table 1821.3: Static count of number of functions and uncalled functions in SPECint95. Adapted from Cheng.[37]

Benchmark Lines of
Code

Number of
Functions

Uncalled
Functions

Benchmark Lines of
Code

Number of
Functions

Uncalled
Functions

008.espresso 14,838 361 46 126.gcc 205,583 2,019 187
023.eqntott 12,053 62 2 130.li 7,597 357 1
072.sc 8,639 179 8 132.ijpeg 29,290 477 16
085.cc1 90,857 1,452 51 134.perl 26,874 276 13
124.m88ksim 19,092 252 13 147.vortex 67,205 923 295

January 30, 2008 v 1.1



CHANGES1823

Statements

F
un

ct
io

n 
de

fin
iti

on
s

1

10

100

1,000

10,000

0 100 200 300 400

•

•
••••••••••••••••••••••••••••••••••••••••••••••••••

•••••
•••••••••••••••••

•••
••••••••••••

•
•••
•••
••••••
••
•
•
•••••••

•••••••••
•
•
••••
•
•

•

•
••••••
••
••

•
•••

•

••••••
•••
•••

•
••••
•
••
•

•

•••

•
•

••

•
•
•

•
•••••
••
•

••••
•

•

•
•••

•

•••
•
•

•
••

•
••
•

•
•

•••

••••
•

•
••
•

•
•

•

•

•

•
••
•

•
•
•

•
•
•
••
•
•
•••

••

••

•

•
•
•
•
••
•
•

••

••

••
•
•••

••
•

•

•••
•
•

•

•• ••••• ••••
•
••
•
••

•

••••••
•
••••
•
•••••••• ••

•
•••

•

Visible lines

0 100 200 300 400

••

•
•
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•
••••••••••••••••••••••••••

•
•••
••
••
••••••••••••

•
•••••
••
••••
•
••••
•
•••
••••
•
•••••••••

••
•••••
•••
•

••
•••••••
••
••

•
•
•
•••

•

•
•
•

••
•
••••
••••
•
••
•••
•
•••
•
••

•

•
•••
•
•••
•
•
•
••••••
•••
•
•

•
•

•
•

••
•
••
•

•

••
••
•
•

•
•••
•••

•

•
•
•

••

•
••
••

•
•

•
••••
•

•

•
•
•
•

•

•••
•
•
•
•

•

•

•
•

•

•••

•
•

•

•
•

••

•
•

•
•

••

•••
•

•

••

•
•

••

••
•

•
•
•••
•••

•
••
••••••••

•
•

•

•
•
•

•
•
•

•
•
•

•••

•

•••
•••
•
••
•
•
••

Figure 1821.4: Number of function definitions containing a given number of statements and visible source lines. Based on the
translated form of this book’s benchmark programs.

References to objects with no linkage

F
un

ct
io

n 
de

fin
iti

on
s

1

10

100

1,000

10,000

100,000

0 25 50 75 100

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××
×
××××××

×
××××××

×××××××
×

•
•••••••••••••••••••••••••••••••••••••••••••••••••••••

•••
•••••••

•
•
•••

••
••
•
•••••••

•
••
•
••
••
•
•
•••

•
•••

•

•

•
•

References to objects with external linkage

0 20 40 60 80

× read of object
• modification of object

×

×
×
××
××××

××××××××××××××××××××××××
××
××××××

××
×××××

×
×××

×
×××××

××
×

×
×××

×
××
×

×

×××××

×
×
×

×

×

•

•
•
•
•
••
••••••

••
•
••
••
•
•
••

•

•
••
•
•

••
••

•

•
•••

•
•
•

•

••

••

•• •• ••
••

• ••• •

Objects with internal linkage

0 20 40 60

×

×
×
××
××
××
××××××××

×××××××××
××××

×××
×
×
××
×

×
××

××

×

×××××
×
×
×

×

×

××
×

×
×

•

•
•
•
•
••
••
•
••
•••

•••••••••
•
••

••
•
•
••
•
•

•

•
•
• ••••••• • • •

Figure 1821.5: Number of function definitions containing a given number of references (i.e., an access or modification) to all
objects, having various kinds of linkage. Based on the translated form of this book’s benchmark programs.

Table 1821.4: Mean number of instructions executed per function invocation. Based on Calder, Grunwald, and Zorn.[27]

Program Mean Leaf Non-Leaf Program Mean Leaf Non-Leaf

burg 61.6 30.6 142.8 eqntott 386.8 402.8 294.2
ditroff 58.6 72.3 56.3 espresso 244.9 151.3 526.5
tex 173.2 44.3 205.4 gcc 96.4 30.1 123.5
xfig 61.9 38.6 74.8 li 42.5 31.9 44.2
xtex 114.9 93.9 136.5 sc 71.1 49.4 80.1
compress 368.4 1,360.2 367.5 Mean 152.8 209.6 186.5

Table 1821.5: Contents of function bodies (as a percentage of all bodies) for embedded .c source,[61] SPECint95, and the
translated form of this book’s benchmark programs.

Embedded SPECint95 Book benchmarks

Trivial (one basic block) 32.7 16.2 57.1
Non-looping 47.9 48.1 18.1
Looping 19.4 35.7 24.8

1823The return type of a function shall be void or an object type other than array type.function
definition return
type

v 1.1 January 30, 2008



CHANGES 1854

References to same object (no linkage)

F
un

ct
io

n 
de

fin
iti

on
s

1

10

100

1,000

10,000

100,000

0 25 50 75 100

××
××
××
×××××××××××××××××××××××××××××××××××××

×
×××××××××××

××××
×

×
×××

×
×××

×
××××××

×
×
×
××
×
××××

××

××

××××

×

×
××

×
××

×

•
•

•
•
••
••
••
••••••••••

•••••
•••••••••

•
••••

•
•••

••
•
•
•••

•
•
•
• •••

•
•

•
•
••••••

•
•

••
•
•
••
•

•
•
• •

•
••

•

•

•
•
• •

References to same object (external linkage)

0 20 40 60 80

× read of object
• modification of object

×

×
×
×
××
××
××
×××××××××××××××××

×
×
×
×

×

×
×
×××

×

××××
×
××××××

×

×

×

××

×

××
×××

× ×

×

××××××××

•

•

•
•
••
•
•••

•
•

••••
••••

• •••

•

•
••

• ••• • • • •

Same object (internal linkage)

0 20 40 60

×

×
×
×
××
×××

×
××
××××

×××
×
×
×××××××

×
×

××

×
×××

××
×
×××××

×
×

×
×

×

•

•

•
•
•
•
•

•
•

•

••
•••

••
•
••••

•
•••

•

•

•

•

•
•
• • • •

Figure 1821.6: Number of function definitions containing a given number of references (i.e., an access or modification) to the
same object, having various kinds of linkage. Based on the translated form of this book’s benchmark programs.

Usage
Usage information on function return types in the .c files is given elsewhere (see Table 1005.1).

Table 1823.1: Occurrence of function return types (as a percentage of all return types; signedness and number of bits appearing
in value representation form) appearing in the source of embedded applications (5,597 function definitions) and the SPECint95
benchmark (2,713 function definitions). A likely explanation of the greater use of type void is the perceived performance
issues associated with returning values via the stack causing developers to return values via objects at file scope. Adapted from
Engblom.[61]

Type/Representation Embedded SPECint95 Type/Representation Embedded SPECint95

void 59.4 31.2 ptr-to . . . 2.0 17.1
unsigned 32 bit 0.5 2.2 signed 32 bit 0.3 48.4
unsigned 16 bit 3.3 0.0 signed 16 bit 1.6 0.2
unsigned 8 bit 31.6 0.5 signed 8 bit 0.8 0.0

1831 The declarator in a function definition specifies the name of the function being defined and the identifiers of its
parameters.

Usage
Information on argument types is given elsewhere (see Table 1003.1).

Table 1831.1: Occurrence of parameter types in function definitions (as a percentage of the parameters in all function definitions).
Based on the translated form of this book’s benchmark programs.

Type % Type % Type % Type %

struct * 44.4 void * 3.4 long 1.6 struct * * 1.2
int 14.7 union * 3.1 int * 1.5 enum 1.2
other-types 6.8 unsigned long 2.7 unsigned char * 1.4 const char * 1.1
unsigned int 5.1 unsigned int * 2.0 char * * 1.3 long * 1.0
char * 4.7 unsigned char 1.6 unsigned short 1.2

1844 If the } that terminates a function is reached, and the value of the function call is used by the caller, the function ter-
mination

reaching }behavior is undefined.

Usage
In the translated source of this book’s benchmark programs 0.7% of function definitions contained both
return; (or the flow of control reached the terminating }) and return expr;.

January 30, 2008 v 1.1



CHANGES1854

1854
preproces-
sor directives
syntax

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
# non-directive

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
# if constant-expression new-line groupopt
# ifdef identifier new-line groupopt
# ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
# elif constant-expression new-line groupopt

else-group:
# else new-line groupopt

endif-line:
# endif new-line

control-line:
# include pp-tokens new-line
# define identifier replacement-list new-line
# define identifier lparen identifier-listopt )

replacement-list new-line
# define identifier lparen ... ) replacement-list new-line
# define identifier lparen identifier-list , ... )

replacement-list new-line
# undef identifier new-line
# line pp-tokens new-line
# error pp-tokensopt new-line
# pragma pp-tokensopt new-line
# new-line

text-line:
pp-tokensopt new-line

non-directive:
pp-tokens new-line

lparen:
a ( character not immediately preceded by white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

v 1.1 January 30, 2008



CHANGES 1872

Indentation of#

V
is

ib
le

 li
ne

s

0 4 8 12 16 24 32 40 48

1

10

100

1,000

10,000

100,000
× × .c files×

×
×

×
×

×

×

×

×

×

×××

×
×

××
×

×

×

×

×

×

×

×

• • .h files

•

•

•
• •

•

•

•

• •
•

•

• •
• •

•

•

•

Figure 1854.1: Number of lines containing a preprocessing directive starting at a given indentation from the start of the line (i.e.,
amount of white space before the first # on a line, with the tab character treated as eight space characters). Based on the visible
form of .c and .h files.

Percentage line count into .c source file

O
cc

ur
re

nc
es

1

10

100

1,000

10,000

0 25 50 75 100

• #define
× #include

×
××××××××××××××××××××××××××××××××××××××

×
×××××××××

×

×
××
×
×××××××××××××××××

×
×××××

×
××
×
×
××××××××××

××××××
×
×

•
••
••••••••••••••••••••••••••••

••••••••••••••••••••••••
•••

•
••
•••••••••

•
••
••••••••••

•••
•
••
•••••••••

•
•

Percentage line count into .h source file

0 25 50 75 100

×

××××××××××××××××××××××××××××××××××××××××××××××××
×

×
××××××

××
×
××××××××

×××××××
×
××××××××

×××××××××
×××××××

••
••
••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•

Figure 1854.2: Number of #include and #define directives appearing at a relative location (i.e., 100*line_number/lines_in_file)
in the source. Based on the visible form of .c and .h files.

Usage
A study by Ernst, Badros, and Notkin[63] provides one of the few empirical studies of C preprocessor use.

Table 1854.1: Occurrence of preprocessor directive names and preprocessor operators (as a percentage of all directive names and
operators). Based on the visible form of the .c and .h files.

Directive Name .c file .h file Directive Name .c file .h file

#define 19.9 75.0 #if 6.2 1.5
#endif 19.9 7.2 ## 0.3 0.9
#include 28.6 4.1 #elif 0.2 0.2
#ifndef 2.4 3.2 #pragma 0.1 0.1
#ifdef 11.3 2.5 #error 0.2 0.1
#else 4.8 1.7 # 0.0 0.1
defined 3.6 1.7 #line 1.4 0.0
#undef 1.0 1.6

1872 and it may contain unary operator expressions of the form #if
defined

defined identifier

January 30, 2008 v 1.1



CHANGES1875

or

defined ( identifier )

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it has
been the subject of a #define preprocessing directive without an intervening #undef directive with the same
subject identifier), 0 if it is not.

Table 1872.1: Occurrence of controlling expressions containing the defined operator (as a percentage of all #if and #elif
preprocessing directives). The #elif preprocessing directive was followed by the defined operator in 66.5% of occurrences of
that preprocessing directive— in the .c files (.h 75.5%). Based on the visible form of the .c and .h files.

Preprocessing Directive %

#if defined ( identifier ) 15.7
#if defined ( identifier ) || defined ( identifier ) 5.8
#if defined ( identifier ) && defined ( identifier ) 2.0

#if ! defined ( identifier ) 1.9
#elif defined ( identifier ) 1.9

#if defined ( identifier ) && ! defined ( identifier ) 1.3
#if ! defined ( identifier ) && ! defined ( identifier ) 0.9

#if defined ( identifier ) || defined ( identifier ) || defined ( identifier ) 0.8
#if defined identifier || defined identifier 0.5

#if ! defined ( identifier ) && ! defined ( identifier ) && ! defined ( identifier ) 0.3
others 5.3

1875Preprocessing directives of the forms

# if constant-expression new-line groupopt
# elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

Usage
The visible form of the .c files contained 12,277 (.h 4,159) #else directives.

Table 1875.1: Common #if preprocessing directive controlling expressions (as a percentage of all #if directives). Where
integer-constant is an integer constant expression, and function-call is an invocation of a function-like macro. Based on the
visible form of the .c files.

Abstract Form of Control Expression %

identifier 26.5
integer-constant 20.3

defined ( identifier ) 16.4
defined ( identifier ) || defined ( identifier ) 6.0

identifier == identifier 2.4
identifier > integer-constant 2.4

identifier >= function-call 2.1
defined ( identifier ) && defined ( identifier ) 2.0

! defined ( identifier ) 2.0
defined ( identifier ) && ! defined ( identifier ) 1.3

identifier >= integer-constant 1.3
identifier != integer-constant 1.1

identifier < function-call 1.1
! identifier 1.1

others 14.0

v 1.1 January 30, 2008



CHANGES 1896

Table 1875.2: Common #elif preprocessing directive controlling expressions (as a percentage of all #elif directives). Where
integer-constant is an integer constant expression, and function-call is a function-like macro. Based on the visible form of the
.c files.

Abstract Form of Control Expression %

defined ( identifier ) 49.7
identifier == identifier 19.4

defined identifier 6.6
defined ( identifier ) || defined ( identifier ) 5.7

identifier 4.7
defined ( identifier ) && defined ( identifier ) 2.6

identifier == integer-constant 1.9
identifier >= function-call 1.2

defined ( identifier ) || defined ( identifier ) || defined ( identifier ) 1.2
identifier >= integer-constant 1.0

others 6.1

1878 After all replacements due to macro expansion and the defined unary operator have been performed, all #if
identifier re-
placed by 0remaining identifiers (including those lexically identical to keywords) are replaced with the pp-number 0, and

then each preprocessing token is converted into a token.

Usage

Approximately 15% of all conditional inclusion directives, in the translated form of this book’s benchmark
programs, contained an identifier that was replaced by 0 (i.e., they contained an identifier that was neither the
operand of defined or defined as macro names).

1889 If it evaluates to false (zero), the group that it controls is skipped: directives are processed only through the
name that determines the directive in order to keep track of the level of nested conditionals;

1896 A #include directive shall identify a header or source file that can be processed by the implementation. source file
inclusion

Physical lines skipped

To
p

le
v e

lfi
le

s

1

10

100

1,000

50 100 150

× #if part

• #else part

×

×
×
××
×
××××××××××

××××
×
×
×
×
××××××

×
×

×
××
×
×
×

×
×××××

×
×××××××

×
××××

×
×××
××
×
××
×
×
×

×
×××

×××
×
×
×
×××

×××
×
×
××
×
×××

×
×

×

×
××

××××

×

×××
×
×

××
×

×××××××× ×

×

•

•
•

••
•••••

•

•
•

•
••
•

•

•
••
•

•

•
••

•

•
•

•

•

•

•
•••••• • •••

•
•• • • • •

Physical lines skipped

T
ra

ns
la

tio
n 

un
its

50 100 150

×
×
×
××

×
××
×

×××

×
×××

×

×
×
×
××
××

××
×

×

××××

×
×
×
××

×

×
×××
××
×
×
×
××××

×
×
×
××
×

×

××

××
××

×

×

×
×
×
×

×

××

×
×
×

×

×
×

×

×

×

×××
×
×××
××

×

×

×
×
××
×
×
×
×

×
×

××
××

××

×
×
×
×
×

×
×
××
×
×
×
×

×
×

×
×
××

×

×

×
××

×

××
×××

××

•

•
•

•

•

•
•

••
•

••

••

•
•

••

•

•

•
•

•

•

•
••
•
•
•••

•

•
• ••

••
•
•

•
•
• •

Figure 1889.1: Number of top-level source files (i.e., the contents of any included files are not counted) and (right) complete
translation units (including the contents of any files #included more than once) having a given number of lines skipped during
translation of this book’s benchmark programs.

January 30, 2008 v 1.1



CHANGES1896

Times#included

N
um

be
r 

of
#i

nc
lu

de
s

1 5 10

1

10

100

1,000

10,000

100,000 × × All #includes

∆ ∆ User#includes

• • Nested user#includes

∆

•

×

∆
•

×

∆
•

×

∆
•

×
∆•
× ∆•× ∆•

×
∆•×

∆× ×

∆×

Figure 1896.1: Number of times the same header was #included during the translation of a single translation unit. The crosses
denote all headers (i.e., all systems headers are counted), triangles denote all headers delimited by quotes (i.e., likely to be user
defined headers) and bullets denote all quote delimited headers #include nested at least three levels deep. Based on the translated
form of this book’s benchmark programs.

Unnecessary headers #include’d

T
ra

ns
la

tio
n 

un
its

0 5 10 15 20

1

10

100

1,000
×

×
×

×
× × ×

×
× × × × × ×

× × × × ×
×

Figure 1896.2: Number of preprocessing translation units (excluding system headers) containing a given number of #includes
whose contents are not referenced during translation (excludes the case where the same header is #included more than once, see
Figure 1896.1). Based on the translated form of this book’s benchmark programs.

#includes

S
ou

rc
e 

fil
es

0 10 20 30 40 50 60

1

10

100

1,000

<header>

"header"

Figure 1896.3: Number of .c source files containing a given number of #include directives (dashed lines represent number of
unique headers). Based on the visible form of the .c files.

v 1.1 January 30, 2008



CHANGES 1931

Rank

O
cc

ur
re

nc
es

 o
f h

ea
de

r 
na

m
e

1

10

100

1,000

1 10 100 1000

× <header>× × × × ×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××
×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

• "header"•
• •

• • • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Figure 1896.4: header-name rank (based on character sequences appearing in #include directives) plotted against the number
of occurrences of each character sequence. Also see Figure 792.26. Based on the visible form of the .c files.

Table 1896.1: Occurrence of two forms of header-names (as a percentage of all #include directives), the percentage of each
kind that specifies a path to the header file, and number of absolute paths specified. Based on the visible form of the .c files.

Header Form % Occurrence % Uses Path Number Absolute Paths

<h-char-sequence> 75.0 86.4 0
"q-char-sequence" 25.0 17.2 0

1897 A preprocessing directive of the form #include
h-char-sequence

# include <h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between the < and > delimiters, and causes the replacement of that directive by the entire contents
of the header.

Table 1897.1: Number of various kinds of identifiers declared in the headers contained in the /usr/include directory of some
translation environments. Information was automatically extracted and represents an approximate lower bound. Versions of the
translation environments from approximately the same year (mid 1990s) were used. The counts for ISO C assumes that the
minimum set of required identifiers are declared and excludes the type generic macros.

Information Linux 2.0 AIX on RS/6000 HP/UX 9 SunOS 4 Solaris 2 ISO C

Number of headers 2,006 1,514 1,264 987 1,495 24
macro definitions 10,252 18,637 13,314 11,987 10,903 446
identifiers with external linkage 1,672 1,542 1,935 616 1,281 487
identifiers with internal linkage 80 34 2012 0 5 0
tag declaration 716 1,088 899 1,208 945 3
typedef name declared 1,024 828 15 493 1,027 55

1931 A preprocessing directive of the form macro
object-like

# define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name146) to be replaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive.

January 30, 2008 v 1.1



CHANGES1934

Macro names expanded

T
ra

ns
la

tio
n 

un
its

100 200 400

1

10

100

1,000 × × all macro expansions

×××××
×

××××××××
×

××
××××××

×××××××
××

×××××
××××

• • function-macro expansions

•
•
•
• •

• • • • • •
• • •

• •
• • • •

•
• • •

•

•
• •

• •
• •

•
•
•

•
•

•
•
•
•

Figure 1931.1: Number of translation units containing a given number of macro names which were macro expanded, excluding
expansions that occurred while processing the contents of system headers. Based on the translated form of this book’s benchmark
programs.

Usage
Usage information on the number of macro names defined in source files is given elsewhere.limit

macro definitions
287

Table 1931.1: Detailed breakdown of the kinds of replacement lists occurring in macro definitions. Adapted from Ernst, Badros,
and Notkin.[63]

Replacement List % Example

constant 42 #define ARG_MAX 1000
expression 33 #define SHFT_UP(x) ((x) << 8)
empty 6.9 #define DUMMY
unknown identifier 6.9 #define INTERN_BUF buffer
statement 5.1 #define TERMINATE goto func_end
type 2.1 #define NODE_PTR void *
other 1.9 #define OPTION -X=23
symbol 1.4 #define ALLOC_STORAGE malloc
syntactic 0.5 #define begin {

Table 1931.2: Common macro definitions listed with an abstracted form of their replacement list (as a percentage of all macro
definitions). Note that function-call may also be a macro invocation. Based on the visible form of the .c and .h files.

Kind of Macro Defined and Abstract Form of its Replacement List %

object-like macro integer-constant 50.7
object-like macro identifier 5.9
object-like macro expression 5.8
function-like macro function-call 4.7
object-like macro function-call 3.7
object-like macro string-literal 3.4
function-like macro expression 3.4
object-like macro 3.4
object-like macro constant-expression 2.0
function-like macro 1.7
others 15.4

1934The parameters are specified by the optional list of identifiers, whose scope extends from their declaration inmacro parameter
scope extends the identifier list until the new-line character that terminates the #define preprocessing directive.

v 1.1 January 30, 2008



CHANGES 1976

Usage
Usage information on the number of parameters in function-like macro definitions is given elsewhere. 290 limitmacro param-

eters

1950 Each # preprocessing token in the replacement list for a function-like macro shall be followed by a parameter #
operatoras the next preprocessing token in the replacement list.

Usage
Based on the visible form of the .c files 0.26% (0.09% .h files) of the replacement lists of macro definitions
contained a # operator. There were no obvious patterns to the usage.

1958 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form of ##
operatormacro definition.

Table 1958.1: Occurrence of the ## preprocessor operator (as a percentage of all occurrences of that operator). The form , ##
identifier is a gcc extension (described in the Common implementations subclause). Based on the visible form of the .c and
.h files.

Preprocessing Token Sequence %

identifier ## identifier 70.2
, ## identifier 24.2
identifier ## identifier ## identifier 15.7
others 4.8
integer-constant ## identifier 1.8
integer-constant ## identifier ## integer-constant 1.0
identifier ## integer-constant 1.0

1961 For both object-like and function-like macro invocations, before the replacement list is reexamined for more
macro names to replace, each instance of a ## preprocessing token in the replacement list (not from an
argument) is deleted and the preceding preprocessing token is concatenated with the following preprocessing
token.

Table 1961.1: Possible results of concatenating, using the ## operator, pairs of preprocessing tokens (the one appearing in the left
column followed by the one appearing in the top row) where the result might be defined (undefined denotes undefined behavior).

identifier pp-number punctuator string-literal character-constant

identifier identifier identifier or
undefined

undefined string-literal or
undefined

character-constant
or undefined

pp-number pp-number pp-number pp-number or
undefined

undefined undefined

punctuator pp-number or
undefined

pp-number or
undefined

punctuator or
undefined

undefined undefined

everything else undefined undefined undefined undefined undefined

1976 A preprocessing directive of the form #undef

# undef identifier new-line

causes the specified identifier no longer to be defined as a macro name.

Usage
Approximate 5% of all #undef directives occur before a #include directive (based on the visible form of
the .c files).

January 30, 2008 v 1.1



CHANGES2044

Table 1976.1: Occurrence of various sequences of preprocessing directives (as a percentage of all such sequences) that follow a
#undef and reference the same identifier (e.g., 2.7% of the first occurrence of #undef are followed by one or more #defines
followed by one or more #undefs). #define represents one or more #define preprocessing directives. #undef represents
one or more #undef preprocessing directives. #if[n]def represents two or more #ifs and #ifndefs, in any order. #und-def
represents one or more pairs of #undef #define preprocessing directives. Based on the visible form of the .c files.

Following Directive Sequences %

53.0
#ifdef 20.4
#define 16.2
others 4.8
#define #undef 2.7
#if(n)def 1.5
#define #undef-#define #undef 1.4

2004The following macro names151) shall be defined by the implementation:macro name
predefined

Table 2004.1: Occurrence of predefined macro names (as a percentage of all predefined macro names; a total of 1,826). Based on
the visible form of the .c and .h files.

Predefined Macro .c
files

.h
files

Predefined Macro .c
files

.h
files

Predefined Macro .c
files

.h
files

_ _LINE_ _ 42.17 43.47 _ _TIME_ _ 2.52 0.00 _ _STDC_IEC_559_ _ 0.00 0.00
_ _FILE_ _ 36.31 37.77 _ _STDC_VERSION_ _ 0.00 0.00 _ _STDC_HOSTED_ _ 0.00 0.00
_ _STDC_ _ 15.77 18.11 _ _STDC_ISO_10646_ _ 0.00 0.00
_ _DATE_ _ 3.23 0.65 _ _STDC_IEC_559_COMPLEX_ _ 0.00 0.00

2035Declaring an identifier with internal linkage at file scope without the static storage-class specifier is anidentifier linkage
future language
directions obsolescent feature.

Usage
The translated form of this book’s benchmark programs contained 12 declarations of an identifier with
internal linkage at file scope without the static storage-class specifier.

2044Table 2044.1: Occurrence of calls to C library functions (as a percentage of all calls). Based on the translated form of this book’s
benchmark programs.

Function % Function % Function % Function %

fprintf 1.468 memmove 0.093 strstr 0.028 ferror 0.016
sprintf 0.978 fclose 0.085 sin 0.028 atof 0.016
printf 0.902 strchr 0.077 mblen 0.028 strncat 0.015
strlen 0.824 fopen 0.077 realloc 0.026 ftell 0.015
strcmp 0.730 fabs 0.065 memcmp 0.021 tolower 0.014
strcpy 0.533 signal 0.045 fputs 0.021 fscanf 0.014
free 0.397 getenv 0.045 strerror 0.020 abort 0.014
memcpy 0.324 abs 0.044 cos 0.020 qsort 0.013
memset 0.321 perror 0.040 strtok 0.019 mbtowc 0.013
exit 0.218 fwrite 0.034 strrchr 0.019 fseek 0.013
malloc 0.201 fflush 0.034 sqrt 0.019 calloc 0.013
strncmp 0.194 sscanf 0.032 ungetc 0.018 mbstowcs 0.012
strcat 0.190 vsprintf 0.031 floor 0.017 feof 0.012
rand 0.179 fread 0.030 ceil 0.017 atol 0.012
strncpy 0.145 snprintf 0.029 toupper 0.016 wcstombs 0.011
atoi 0.110 time 0.028 fgets 0.016

v 1.1 January 30, 2008



CHANGES 2203

Table 2044.2: Percentage of instructions executed in developer written code and implementation libraries (main library libc,
and maths library libm) of C programs that do not use the X11 libraries. Based on Calder, Grunwald, and Srivastava.[26]

Programs main libc libm libots libcurses Programs main libc libm libots libcurses

alvinn 97.25 2.12 0.63 li 99.71 0.29
compress 99.98 0.02 m88ksim 99.75 0.03 — 0.22
ditroff 87.80 12.20 perl 70.70 29.30
ear 90.33 6.12 3.55 sc 53.03 18.42 — — 28.55
eqntott 94.29 5.71 vortex 95.11 4.89
espresso 93.93 6.07 Mean 90.15 7.10 0.35 0.02 2.38
go 99.99 0.01

Table 2044.3: Percentage of instructions executed in developer written code and implementation libraries of C programs that use
the X11 libraries. Based on Calder, Grunwald, and Srivastava.[26]

Programs main libc libm libX11 libXaw libXext libXm libXmu libXt

cbzone 48.10 11.80 7.60 32.14 — 0.36
ghostview 3.38 23.39 — 20.93 7.53 0.02 0.08 44.68
gs 91.88 4.99 0.18 2.93 — 0.02
xanim 62.40 29.96 0.06 4.36 0.09 3.13
xfig 4.95 15.05 0.15 28.58 9.84 0.14 41.30
xkeycaps 6.47 18.45 43.15 3.70 0.01 0.06 28.15
xmgr 22.95 12.13 0.04 23.24 — 17.05 — 24.60
xpaint 14.11 11.01 — 25.43 0.77 0.02 48.66
xpilot 68.64 24.24 0.03 7.09 —
xpool 53.17 0.26 44.91 1.65 —
xtex 45.02 23.86 — 23.09 2.95 0.03 5.05
xv 74.07 25.46 0.01 0.46 —
Mean 41.26 16.72 4.41 17.75 2.07 0.00 1.42 0.03 16.33

2063 The standard headers are
<assert.h> <inttypes.h> <signal.h> <stdlib.h> <complex.h> <iso646.h> <stdarg.h> <string.h> <ctype.h>
<limits.h> <stdbool.h> <tgmath.h> <errno.h> <locale.h> <stddef.h> <time.h> <fenv.h> <math.h> <stdint.h>
<wchar.h> <float.h> <setjmp.h> <stdio.h> <wctype.h>

Table 2063.1: Number of standard headers appearing in a #include directive. Based on the visible form of the .c and .h files.

Header name .c file .h file Header name .c file .h file

stdio.h 1,424 175 signal.h 213 10
stdlib.h 860 100 locale.h 23 7
stddef.h 107 90 stdint.h 0 3
string.h 828 83 inttypes.h 1 1
errno.h 481 82 float.h 25 1
setjmp.h 81 80 wctype.h 1 0
stdarg.h 167 54 wchar.h 2 0
time.h 185 47 tgmath.h 0 0
ctype.h 291 35 stdbool.h 0 0
limits.h 88 32 iso646.h 0 0
assert.h 91 26 fenv.h 1 0
math.h 246 21 complex.h 0 0

2175 The header <ctype.h>declares several functions useful for classifying and mapping characters.166) In all ctype.h
headercases the argument is an int, the value of which shall be representable as an unsigned char or shall equal the

value of the macro EOF. If the argument has any other value, the behavior is undefined.

January 30, 2008 v 1.1



CHANGES2508

isprint

isgraph

space

isspace

\ f \ n \ r \ t \ v

iscntrl

\ a \ b

isalnum

ispunct

A-F a-f

0..9

A..Z

a..z

! " # ...

isdigit

isalpha

isxdigit

isupper

islower

Figure 2175.1: Interrelationships between the character handling functions.

2203Additional macro definitions, beginning with E and a digit or E and an uppercase letter,171) may also be
specified by the implementation.

Usage
See Future Library Directions for reserved identifier usage information.errno.h

future directions

2216Each of the macros
FE_DOWNWARD FE_TONEAREST FE_TOWARDZERO FE_UPWARD
is defined if and only if the implementation supports getting and setting the represented rounding direction by
means of the fegetround and fesetround functions. Additional implementation-defined rounding directions, with
macro definitions beginning with FE_ and an uppercase letter, may also be specified by the implementation.
The defined macros expand to integer constant expressions whose values are distinct nonnegative values.174)

Usage
Usage information on reserved identifier spellings is given elsewhere (see Table 98.1).

2221Additional implementation-defined environments, with macro definitions beginning with FE_ and an uppercase
letter, and having type “pointer to const-qualified fenv_t”, may also be specified by the implementation.

Usage
Usage information on reserved identifier spellings is given elsewhere (see Table 98.1).

2320The header <math.h> declares two types and many mathematical functions and defines several macros. Mostmath.h
header synopses specify a family of functions consisting of a principal function with one or more double parameters,

a double return value, or both; and other functions with the same name but with f and l suffixes, which are
corresponding functions with float and long double parameters, return values, or both.189) Integer arithmetic
functions and conversion functions are discussed later.

Usage
A study by Citron and Feitelson[40] (based on the SPEC CFP95, Khoros, and MediaBench suites) found that
on average 82% of calls to functions in the maths library, by a program, had the same argument values as
previous calls to those function, by the same program.

2508An implementation need not generate any of these signals, except as a result of explicit calls to the raise
function. Additional signals and pointers to undeclarable functions, with macro definitions beginning, respec-
tively, with the letters SIG and an uppercase letter or with SIG_ and an uppercase letter,210) may also be

v 1.1 January 30, 2008



CHANGES 2885

specified by the implementation. The complete set of signals, their semantics, and their default handling is
implementation-defined; all signal numbers shall be positive.

Usage
See Future Library Directions for reserved identifier usage information. signal.h

future directions

2590 The header <stdio.h>declares three types, several macros, and many functions for performing input and stdio.h
headeroutput.

Usage
A study Pasquale and Polyzos[134] looked at the I/O characteristics of scientific applications, a study by
Hsu, Smith, and Young[86] measured I/O behavior for production database workloads, while Ruemmler and
Wilkes[146] looked at disk access patterns.

2839 The order and contiguity of storage allocated by successive calls to the calloc, malloc, and realloc functions memory man-
agement
functionsis unspecified. The pointer returned if the allocation succeeds is suitably aligned so that it may be assigned

to a pointer to any type of object and then used to access such an object or an array of such objects in the
space allocated (until the space is explicitly deallocated). The lifetime of an allocated object extends from
the allocation until the deallocation. Each such allocation shall yield a pointer to an object disjoint from any
other object. The pointer returned points to the start (lowest byte address) of the allocated space. If the space
cannot be allocated, a null pointer is returned. If the size of the space requested is zero, the behavior is
implementation-defined: either a null pointer is returned, or the behavior is as if the size were some nonzero
value, except that the returned pointer shall not be used to access an object.

Table 2839.1: Memory management function usage. mallocs is the number of calls to the malloc library function, frees the
number of calls to the free library function, and size the mean number of bytes of the objects allocated. Based on Calder,
Grunwald, and Zorn.[27]

Program mallocs frees size Program mallocs frees size

burg 23,098 2,895 843.4 eqntott 85 0 23,981.6
ditroff 0 0 — espresso 190,386 190,077 122.5
tex 60 32 1,727.1 gcc 1,043 903 1,353.4
xfig 7,260 4,070 193.6 li 27 0 3,407.5
xtex 2,944 1,131 358.9 sc 6,985 2,419 52.0
compress 1 0 16.0

2885
div

function
ldiv

function
lldiv

function
Table 2885.1: Table 7.2: Results of div, ldiv and lldiv

numer denom quot rem

7 3 2 1
-7 3 -2 -1
7 -3 -2 1

-7 -3 2 -1

January 30, 2008 v 1.1



References
1. P. L. Ackerman and E. D. Heggestad. Intelligence, personal-

ity, and interests: Evidence for overlapping traits. Psycho-
logical Bulletin, 121(2):219–245, 1997.

2. E. N. Adams. Optimizing preventive service of software prod-
ucts. IBM Journal of Research and Development, 28(1):2–
14, 1984.

3. A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs
on a modern processor: Where does time go? In M. P. Atkin-
son, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L.
Brodie, editors, Proceedings of the Twenty-fifth International
Conference on Very Large Databases, pages 266–277, Los
Altos, CA 94022, USA, Sept. 1999. Morgan Kaufmann Pub-
lishers.

4. M. M. Al-Jarrah and I. S. Torsun. An empirical analysis
of COBOL programs. Software–Practice and Experience,
9:341–359, 1979.

5. J. R. Anderson. Interference: The relationship between
response latency and response accuracy. Journal of Ex-
perimental Psychology: Human Learning and Memory,
7(5):326–343, 1981.

6. J. R. Anderson. Learning and Memory. John Wiley & Sons,
Inc, second edition, 2000.

7. N. Anquetil and T. Lethbridge. Assessing the relevance of
identifier names in a legacy software system. In Proceedings
of CASCON’98, pages 213–222, 1998.

8. J. Backus. The history of FORTRAN I, II, and III. SIGPLAN
Notices, 13(8):165–180, 1978.

9. A. D. Baddeley. How does acoustic similarity influence short-
term memory? Quarterly Journal of Experimental Psychol-
ogy, 20:249–264, 1968.

10. A. D. Baddeley. Essentials of Human Memory. Psychology
Press, 1999.

11. H. P. Bahrick. Semantic memory content in permastore: Fifty
years of memory for Spanish learned in school. Journal of
Experimental Psychology: General, 113(1):1–26, 1984.

12. D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo,
and M. Yarrow. The NAS parallel benchmarks 2.0. Technical
Report NAS-95-020, NASA Ames Research Center, Dec.
1995.

13. M. C. Baker. The Atoms of Language. Basic Books, 2001.
14. T. Ball and J. R. Larus. Branch prediction for free. ACM

SIGPLAN Notices, 28(6):300–313, June 1993.
15. V. A. Bell and P. N. Johnson-Laird. A model theory of modal

reasoning. Cognitive Science, 22(1):25–51, 1998.
16. B. Berlin and P. Kay. Basic Color Terms. Berkeley: University

of California Press, 1969.
17. R. Bhargava, J. Rubio, S. Kannan, and L. K. John. Un-

derstanding the impact of X86/NT computing on microar-
chitecture. In L. K. John and A. M. G. Maynard, editors,
Characterization of Contemporary Workloads, chapter 10,
pages 203–228. Kluwer Academic Publishers, 2001.

18. J. M. Bieman and V. Murdock. Finding code on the world
wide web: A preliminary investigation. In Proceedings First
International Workshop on Source Code Analysis and Ma-
nipulation (SCAM2001), pages 73–78, 2001.

19. R. Bodík, R. Gupta, and M. L. Soffa. Complete removal of
redundant computations. In SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages
1–14, 1998.

20. G. H. Bower, M. C. Clark, A. M. Lesgold, and D. Winzenz.
Hierarchical retrieval schemes in recall of categorized word
lists. Journal of Verbal Learning and Verbal Behavior, 8:323–
343, 1969.

21. J. D. Bransford and J. J. Franks. The abstraction of linguistic
ideas. Cognitive Psychology, 2:331–350, 1971.

22. J. D. Bransford and M. K. Johnson. Contextual prerequisites
for understanding: Some investigations of comprehension
and recall. Journal of Verbal Learning and Verbal Behavior,
11:717–726, 1972.

23. H. D. Brown. Categories of spelling difficulty in speakers of
English as a first and second language. Journal of Verbal
Learning and Verbal Behavior, 9:232–236, 1970.

24. M. Burtscher, A. Diwan, and M. Hauswirth. Static load clas-
sification for improving the value predictability of data-cache
misses. In Proceedings of the ACM SIGPLAN 2002 Confer-
ence on Programming Language Design and Implementa-
tion (PLDI), pages 222–233. ACM Press, June 2002.

25. B. Calder, P. Feller, and A. Eustace. Value profiling. In Pro-
ceedings of the 30th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO-97), pages 259–269,
Los Alamitos, Dec. 1–3 1997. IEEE Computer Society.

26. B. Calder, D. Grunwald, and A. Srivastava. The predictability
of branches in libraries. Technical Report Research Report
95/6, Western Research Laboratory - Compaq, 1995.

27. B. Calder, D. Grunwald, and B. Zorn. Quantifying behav-
ioral differences between C and C++ programs. Journal of
Programming Languages, 2(4):313–351, 1995.

28. J. I. D. Campbell. On the relation between skilled perfor-
mance of simple division and multiplication. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition,
23(5):1140–1159, 1997.

29. J. I. D. Campbell and D. J. Graham. Mental multiplication
skill: Structure, process, and acquisition. Canadian Journal
of Psychology, 39(2):338–366, 1985.

30. A. K. Carter and C. G. Clopper. Prosodic and morphological
effects on word reduction in adults: A first report. Technical
Report Progress Report No. 24 (2000), Speech Research
Laboratory, Indiana University, 2000.

31. E. Caspi. Empirical study of opportunities for bit-level spe-
cialization in word-based programs. Thesis (m.s.), University
of California, Berkeley, 2000.

32. K. A. Cassell. Tools for the analysis of large PROLOG pro-
grams. Thesis (m.s.), University of Texas at Austin, Austin,
TX, 1985.

33. J. P. Cavanagh. Relation between the immediate memory
span and the memory search rate. Psychological Review,
79(6):525–530, 1972.

34. M. Celce-Murcia and D. Larsen-Freeman. The Grammar
Book: An ESL/EFL Teacher’s Course. Heinle & Heinle, sec-
ond edition, 1999.

35. S. M. Chambers and K. I. Forster. Evidence for lexical ac-
cess in a simultaneous matching task. Memory & Cognition,
3(5):549–559, 1975.

36. P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. mei W. Hwu.
Profile-guided automatic inline expansion for C programs.
Software–Practice and Experience, 22(5):349–369, 1992.

v 1.1 January 30, 2008



37. B.-C. Cheng. Compile-Time Memory Disambiguation for
C Programs. PhD thesis, University of Illinois at Urbana-
Champaign, 2000.

38. R. J. Chevance and T. Heidet. Static profile and dynamic be-
havior of COBOL programs. SIGPLAN Notices, 13(4):44–57,
Apr. 1978.

39. D. Citron, D. Feitelson, and L. Rudolph. Accelerating multi-
media processing by implementing memoing in multiplica-
tion and division units. In Proceedings of 8th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-VIII), pages 252–
261, 1998.

40. D. Citron and D. G. Feitelson. Hardware memoization of
mathematical and trigonometric functions. Technical Report
2000-5, Hebrew University of Jerusalem, Mar. 2000.

41. D. W. Clark and C. C. Green. An empirical study of list struc-
ture in Lisp. Communications of the ACM, 20(2):78–87, Feb.
1977.

42. G. Cohen. Why is it difficult to put names to faces? British
Journal of Psychology, 81:287–297, 1990.

43. A. M. Collins and M. R. Quillian. Retrieval time from seman-
tic memory. Journal of Verbal Learning and Verbal Behavior,
8:240–247, 1969.

44. B. Comrie. Language Universals and Linguistic Typology.
Blackwell, second edition, 1989.

45. D. A. Connors, Y. Yamada, and W. mei W. Hwu. A software-
oriented floating-point format for automotive control systems.
In Workshop on Compiler and Architecture Support for Em-
bedded Computing Systems (CASES’98), 1998.

46. R. Conrad. Order error in immediate recall of sequences.
Journal of Verbal Learning and Verbal Behavior, 4:161–169,
1965.

47. V. J. Cook. Inside Language. Arnold, 1997.

48. N. S. Coulter and N. H. Kelly. Computer instruction set usage
by programmers: An empirical investigation. Communica-
tions of the ACM, 29(7):643–647, July 1986.

49. M. Daneman and P. A. Carpenter. Individual differences in
working memory and reading. Journal of Verbal Learning
and Verbal Behavior, 19:450–466, 1980.

50. M. Daneman and P. A. Carpenter. Individual differences in
integrating information between and within sentences. Jour-
nal of Experimental Psychology: Learning, Memory, and
Cognition, 9(4):561–584, 1983.

51. J. W. Davidson, J. R. Rabung, and D. B. Whalley. Relating
static and dynamic machine code measurements. Techni-
cal Report CS-89-03, Department of Computer Science,
University of Virginia, July 13 1989.

52. C. B. De Soto, M. London, and S. Handel. Social reason-
ing and spatial paralogic. Journal of Personality and Social
Psychology, 2(4):513–521, 1965.

53. S. Dehaene and R. Akhavein. Attention, automaticity, and
levels of representation in number processing. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition,
21(2):314–326, 1995.

54. D. Detlefs, A. Dosser, and B. Zorn. Memory allocation costs
in large C and C++ programs. Technical Report CU-CS-665-
93, University of Colorado at Boulder, Aug. 1993.

55. C. DiMarco, G. Hirst, and M. Stede. The semantic and stylis-
tic differentiation of synonyms and near-synonyms. In AAAI
Spring Symposium on Building Lexicons for Machine Trans-
lation, pages 114–121, Mar. 1993.

56. R. Dirven. Dividing up physical and mental space into con-
ceptual categories by means of English prepositions. In
C. Zelinksy-Wibbelt, editor, Natural Language processing
(vol. 3, The Semantics of Prepositions), pages 73–97. Mou-
ton de Gruyter, 1993.

57. D. J. Dooling and R. E. Christiaansen. Episodic and seman-
tic aspects of memory for prose. Journal of Experimental
Psychology: Human Learning and Memory, 3(4):428–436,
1977.

58. W. H. Eichelman. Familiarity effects in the simultane-
ous matching task. Journal of Experimental Psychology,
86(2):275–282, 1970.

59. J. L. Elshoff. A numerical profile of commercial PL/I pro-
grams. Software–Practice and Experience, 6:505–525,
1976.

60. J. Engblom. Static properties of commercial embedded real-
time and embedded systems. Technical Report ASTEC
Technical Report 98/05, Uppsala University, Sweden, Nov.
1998.

61. J. Engblom. Why SpecInt95 should not be used to bench-
mark embedded systems tools. ACM SIGPLAN Notices,
34(7):96–103, July 1999.

62. J. Epelboim, J. R. Booth, R. Ashkenazy, A. Taleghani, and
R. M. Steinmans. Fillers and spaces in text: The impor-
tance of word recognition during reading. Vision Research,
37(20):2899–2914, 1997.

63. M. D. Ernst, G. J. Badros, and D. Notkin. An empirical analy-
sis of C preprocessor use. IEEE Transactions on Software
Engineering, 28(12):1146–1170, 2002.

64. W. K. Estes. Classification and Cognition. Oxford University
Press, 1994.

65. L. H. Etzkorn, L. L. Bowen, and C. G. Davis. An approach to
program understanding by natural language understanding.
Natural Language Engineering, 5(1):1–18, 1999.

66. J. S. B. T. Evans, J. L. Barston, and P. Pollard. On the conflict
between logic and belief in syllogistic reasoning. Memory &
Cognition, 11(3):295–306, 1983.

67. C. J. Fillmore. Topics in lexical semantics. In R. W. Cole,
editor, Current Issues in Linguistic Theory, pages 76–138.
Indiana University Press, 1977.

68. B. Fluri, M. Würsch, and H. C. Gall. Do code and com-
ments co-evolve? On the relation between source code
and comment changes. In Proceedings of the IEEE Working
Conference on Reverse Engineering (WCRE), page ???,
Oct. 2007.

69. J. S. Foster, M. Fahndrich, and A. Aiken. A theory of type
qualifiers. In Proceedings of the ACM SIGPLAN’99 Confer-
ence on Programming Language Design and Implementa-
tion, pages 192–203, 1999.

70. M. Franklin and G. S. Sohi. Register traffic analysis for
streamlining inter-operation communication in fine-grain par-
allel processors. In Proceedings of the 25th Annual Interna-
tional Symposium on Microarchitecture (MICRO-25), pages
236–245, 1992.

January 30, 2008 v 1.1



71. R. Frost, L. Katz, and S. Bentin. Strategies for visual word
recognition and orthographical depth: A multilingual com-
parison. Journal of Experimental Psychology: Human Per-
ception and Performance, 13(1):104–115, 1987.

72. W. Gellerich, M. Kosiol, and E. Ploedereder. Where does
GOTO go to? In Reliable Software Technology —Ada-
Europe 1996, volume 1088 of LNCS, pages 385–395.
Springer, 1996.

73. A. C. Graesser, S. B. Woll, D. J. Kowalski, and D. A. Smith.
Memory for typical and atypical actions in scripted activities.
Journal of Experimental Psychology: Human Learning and
Memory, 6(5):503–515, 1980.

74. J. M. Gravley and A. Lakhotia. Identifying enumeration types
modeled with symbolic constants. In L. Wills, I. Baxter, and
E. Chikofsky, editors, Proceedings of the 3rd Working Con-
ference on Reverse Engineering, pages 227–238. IEEE
Computer Society Press, Nov. 1996.

75. D. Green and P. Meara. The effects of script on visual search.
Second Language Research, 3(2):102–118, 1987.

76. K. R. Hammond, R. M. Hamm, J. Grassia, and T. Pearson.
Direct comparison of the efficacy of intuitive and analytical
cognition in expert judgment. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-17:753–770, Sept. 1987.

77. W. S. Harley. Associative Memory in Mental Arithmetic. PhD
thesis, Johns Hopkins University, Oct. 1991.

78. M. W. Harm. Division of Labor in a Computational Model of
Visual Word Recognition. PhD thesis, University of Southern
California, Aug. 1998.

79. M. J. Harrold, J. A. Jones, and G. Rothermel. Empirical
studies of control dependence graph size for C. Empirical
Software Engineering Journal, 3(2):203–211, Mar. 1998.

80. J. L. Hennessy and D. A. Patterson. Computer Architecture
A Quantitative Approach. Morgan Kaufmann Publishers, Inc,
1996.

81. T. P. Hill. A statistical derivation of the significant-digit law.
Statistical Science, 10:354–363, 1996.

82. T. P. Hill. The first-digit phenomenon. American Scientist,
86:358–363, July-Aug. 1998.

83. R. M. Hogarth and H. J. Einhorn. Order effects in belief up-
dating: The belief-adjustment model. Cognitive Psychology,
24:1–55, 1992.

84. L. M. Horowitz. Free recall and ordering of trigrams. Journal
of Experimental Psychology, 62(1):51–57, 1961.

85. M. W. Howard and M. J. Kahana. When does semantic
similarity help episodic retrieval? Journal of Memory and
Language, 46:85–98, 2002.

86. W. W. Hsu, A. J. Smith, and H. C. Young. I/O reference
behavior of production database workloads and the TPC
benchmarks - an analysis at the logical level. Technical Re-
port UCB/CSD-99-1071, University of California, Berkeley,
Nov. 1999.

87. Intel. IA-32 Intel Architecture Software Developer’s Manual
Volume 1: Basic Architecture. Intel, Inc, 2000.

88. P. J. Jalics. COBOL on a PC: A new perspective on a lan-
guage and its performance. Communications of the ACM,
30(2):142–154, Feb. 1987.

89. R. Jordan, R. Lotufo, and D. Argiro. Khoros Pro 2001 Student
Version. Khoral Research, Inc, 2000.

90. D. Kahneman and A. Tversky. On the psychology of pre-
diction. In D. Kahneman, P. Slovic, and A. Tversky, editors,
Judgment under uncertainty: Heuristics and biases, chap-
ter 4, pages 48–68. Cambridge University Press, 1982.

91. D. Kahneman and A. Tversky. Subjective probability: A judg-
ment of representativeness. In D. Kahneman, P. Slovic, and
A. Tversky, editors, Judgment under uncertainty: Heuristics
and biases, chapter 3, pages 32–47. Cambridge University
Press, 1982.

92. D. Kahneman and A. Tversky. Prospect theory: An analysis
of decision under risk. In D. Kahneman and A. Tversky, edi-
tors, Choices, Values, and Frames, chapter 2, pages 17–43.
Cambridge University Press, 1999.

93. T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engi-
neering, 28(7):654–670, 2002.

94. B. Kelk. Letter frequency rankings for various languages.
www.bckelk.uklinux.net/words/etaoin.html, 2003.

95. W. Kintsch and J. Keenan. Reading rate and retention as a
function of the number of propositions in the base structure
of sentences. Cognitive Psychology, 5:257–274, 1973.

96. D. Klahr, W. G. Chase, and E. A. Lovelace. Structure and
process in alphabetic retrieval. Journal of Experimental Psy-
chology: Learning, Memory and Cognition, 9(3):462–477,
1983.

97. J. Klayman and Y.-W. Ha. Confirmation, disconfirmation,
and information in hypothesis testing. Psychological Review,
94(2):211–228, 1987.

98. J. L. Knetsch. The endowment effect and evidence of nonre-
versible indifference curves. In D. Kahneman and A. Tversky,
editors, Choices, Values, and Frames, chapter 9, pages
171–179. Cambridge University Press, 1999.

99. D. E. Knuth. An empirical study of FORTRAN programs.
Software–Practice and Experience, 1:105–133, 1971.

100. P. A. Kolers. Reading A year later. Journal of Experimental
Psychology: Human Learning and Memory, 2(3):554–565,
1976.

101. N. kuan Tsao. On the distribution of significant digits and
roundoff errors. Communications of the ACM, 17(5):269–
271, May 1974.

102. W. Labov. The boundaries of words and their meaning. In
C.-J. N. Bailey and R. W. Shuy, editors, New ways of analyz-
ing variation of English, pages 340–373. Georgetown Press,
1973.

103. K. Laitinen. Natural naming in software development and
maintenance. PhD thesis, University of Oulu, Finland, Oct.
1995. VTT Publications 243.

104. K. Laitinen, J. Taramaa, M. Heikkilä, and N. C. Rowe. En-
hancing maintainability of source programs through disab-
breviation. Journal of Systems and Software, 37:117–128,
1997.

105. B. L. Lambert, K.-Y. Chang, and P. Gupta. Effects of fre-
quency and similarity neighborhoods on phamacists’ visual
perception of drug names. Social Science and Medicine,
57(10):1939–1955, Nov. 2003.

106. D. Lee, J.-L. Baer, B. Bershad, and T. Anderson. Reducing
startup latency in web and desktop applications. Technical
Report TR-99-03-01, University of Washington, Department
of Computer Science and Engineering, Mar. 1999.

v 1.1 January 30, 2008

www.bckelk.uklinux.net/words/etaoin.html


107. G. Leech, R. Garside, and M. Bryant. CLAWS4: The tag-
ging of the British national corpus. In Proceedings of the
15th International Conference on Computational Linguistics
(COLING 94), pages 622–628, Apr. 1994.

108. G. Leech, P. Rayson, and A. Wilson. Word Frequencies in
Written and Spoken English. Pearson Education, 2001.

109. G. E. Legge, T. S. Klitz, and B. S. Tjan. Mr. Chips: An
ideal-observer model of reading. Psychological Review,
104(3):524–553, 1997.

110. K. M. Lepak, G. B. Bell, and M. H. Lipasti. Silent stores
and store value locality. IEEE Transactions on Computers,
50:1174–1190, 2001.

111. S. Lichtenstein and B. Fishhoff. Do those who know more
also know more about how much they know? Organizational
Behavior and Human Performance, 20:159–183, 1977.

112. D. Lin. Automatic retrieval and clustering of similar words. In
Proceedings of Coling/ACL-98, pages 768–774, 1998.

113. M. A. Linton and R. W. Quong. A macroscopic profile of
program compilation and linking. IEEE Transactions on Soft-
ware Engineering, 15(4):427–436, Apr. 1989.

114. M. Magnus. What’s in a Word? Studies in Phonoseman-
tics. PhD thesis, Norwegian University of Department of
Linguistics Science and Technology, Apr. 2001.

115. J. M. Mandler and N. S. Johnson. Remembrance of things
parsed: Story structure and recall. Cognitive Psychology,
9:111–151, 1977.

116. A. Marcus and J. I. Maletic. Identification of high-level con-
cept clones in source code. In Proceedings of the 16th IEEE
International Conference on Automated Software Engineer-
ing (ASE 2001), pages 107–114, Nov. 2001.

117. A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski.
Contrasting characteristics and cache performance of tech-
nical and multi-user commercial workloads. In ASPLOS-VI:
Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
145–156, Oct. 1994.

118. M. McCloskey, A. Washburn, and L. Felch. Intuitive physics:
The straight-down belief and its origin. Journal of Experimen-
tal Psychology: Learning, Memory and Cognition, 9(4):636–
649, 1983.

119. D. McFadden. Rationality for economists? Journal of Risk
and Uncertainty, 19:73–105, 1999.

120. T. P. McNamara, J. K. Hardy, and S. C. Hirtle. Subjective
hierarchies in spatial memory. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 15(2):211–227,
1989.

121. Microchip. PIC18CXX2 High-Performance Microcontrollers
with 10-Bit A/D, ds39026b edition, 1999.

122. G. A. Miller, J. S. Bruner, and L. Postman. Familiarity of letter
sequences and tachistoscope identification. The Journal of
General Psychology, 50:129–139, 1954.

123. G. A. Miller and S. Isard. Free recall of self-embedded
English sentences. Information and Control, 7:292–303,
1964.

124. M. Mock, M. Das, C. Chambers, and S. J. Eggers. Dynamic
points-to sets: A comparison with static analysis and poten-
tial applications in program understanding and optimization.
Technical Report UW CSE Technical Report 01-03-01, Uni-
versity of Washington, Mar. 2001.

125. A. F. Monk and C. Hulme. Errors in proofreading: Evidence
for the use of word shape in word recognition. Memory &
Cognition, 11(1):16–23, 1983.

126. G. L. Murphy and D. L. Medin. The role of theories in con-
ceptual coherence. Psychological Review, 92(3):289–315,
1985.

127. P. Muter and E. E. Johns. Learning logographies and al-
phabetic codes. Applied Cognitive Psychology, 4:105–125,
1985.

128. I. Neamtiu. Detailed break-down of general data provided in
paper[129] kindly supplied by first author. Jan. 2008.

129. I. Neamtiu, J. S. Foster, and M. Hicks. Understanding source
code evolution using abstract syntax tree matching. In Pro-
ceedings of the 2005 International Workshop on Mining
Software Repositories, pages 1–5, May 2005.

130. R. E. Nisbett, D. H. Krantz, C. Jepson, and Z. Kunda. The
use of statistical heuristics in everyday inductive reasoning.
Psychological Review, 90(4):339–363, 1983.

131. S. F. Oberman. Design issues in high performance float-
ing point arithmetic units. Technical Report CSL-TR-96-711,
Stanford University, Dec. 1996.

132. K. R. Paap, S. L. Newsome, and R. W. Noel. Word shape’s
in poor shape for the race to the lexicon. Journal of Exper-
imental Psychology: Human Perception and Performance,
10(3):413–428, 1984.

133. S. E. Palmer. Vision Science: Photons to Phenomenology.
The MIT Press, 1999.

134. B. K. Pasquale and G. C. Polyzos. A static analysis of I/O
characteristics of scientific applications in a production work-
load. In Proceedings of Supercomputing ’93, pages 388–
397, Nov. 1993.

135. J. W. Payne, J. R. Bettman, and E. J. Bettman. The Adaptive
Decision Maker. Cambridge University Press, 1993.

136. M. J. Pazzani. Influence of prior knowledge on concept ac-
quisition: Experimental and computational results. Journal of
Experimental Psychology: Learning, Memory and Cognition,
17(3):416–432, 1991.

137. R. Peereman and A. Content. Orthographic and phonologi-
cal neighborhood in naming: Not all neighbors are equally
influential in orthographic space. Journal of Memory and
Language, 37:382–410, 1997.

138. D. E. Perry and C. S. Stieg. Software faults in evolving a
large, real-time system: a case study. In Proceedings of the
1993 European Software Engineering Conference, pages
48–67, 1993.

139. J. J. Pollock and A. Zamora. Collection and characterization
of spelling errors in scientific and scholarly text. Journal of
the American Society for Information Science, 34(1):51–58,
1983.

140. P. T. Quinlan and R. N. Wilton. Grouping by proximity or
similarity? Competition between gestalt principles in vision.
Perception, 27:417–430, 1998.

141. A. Ramírez, J.-L. Larriba-Pey, C. Navarro, X. Serrano, J. Tor-
rellas, and M. Valero. Code reordering of decision support
systems for optimized instruction fetch. In IEEE International
Conference on Parallel Processing (ICPP99), 1999.

142. E. J. Ratliff. Decreasing process memory requirements by
overlapping run-time stack data. Thesis (m.s.), Florida State
University, College of Arts and Sciences, 1997.

January 30, 2008 v 1.1



143. J. Reason. Human Error. Cambridge University Press,
1990.

144. RedHill Consulting, Pty. Simian - similarity analyser, v 2.0.2.
www.redhillconsulting.com.au, 2004.

145. E. D. Reichle, A. Pollatsek, D. L. Fisher, and K. Rayner.
Towards a model of eye movement control in reading. Psy-
chological Review, 105(1):125–157, 1998.

146. C. Ruemmler and J. Wilkes. UNIX disk access patterns. In
USENIX Winter 1993 Technical Conference Proceedings,
pages 405–420, Jan. 1993.

147. D. D. Salvucci. An integrated model of eye movements and
visual encoding. Cognitive Systems Research, 1(4):201–
220, 2001.

148. L. H. Shaffer and J. Hardwick. Typing performance as a func-
tion of text. Quarterly Journal of Experimental Psychology,
20:360–369, 1968.

149. R. N. Shepard, C. I. Hovland, and H. M. Jenkins. Learning
and memorization of classifications. Psychological Mono-
graphs: General and Applied, 75(15):1–39, 1961.

150. J. A. Sloboda. Visual imagery and individual differences in
spelling. In U. Frith, editor, Cognitive Processes in Spelling,
chapter 11, pages 231–248. Academic Press, 1980.

151. S. Sloman and D. A. Lagnado. Counterfactual undoing in de-
terministic causal reasoning. In Proceedings of the Twenty-
Fourth Annual Conference of the Cognitive Science Society,
2002.

152. R. L. Solso and J. F. King. Frequency and versatility of let-
ters in the English language. Behavior Research Methods &
Instrumentation, 8(3):283–286, 1976.

153. F. Spadini, M. Fertig, and S. J. Patel. Characterization of
repeating dynamic code fragments. Technical Report CRHC-
02-09, University of Illinois at Urbana-Champaign, 2002.

154. S. Srivastava, M. Hicks, J. S. Foster, and P. Jenkins. Modular
information hiding and type-safe linking for C. In Proceed-
ings of the 2007 ACM SIGPLAN International Workshop
on Types in Languages Design and Implementation, pages
3–14, Apr. 2007.

155. K. E. Stanovich. Who Is Rational? Lawrence Erlbaum Asso-
ciates, 1999.

156. M. W. Stephenson. Bitwise: Optimizing bitwidths using data-
range propagation. Thesis (m.s.), M.I.T, Cambridge, MA,
USA, May 2000.

157. S. Sternberg. Memory-scanning: Mental processes re-
vealed by reaction-time experiments. American Scientist,
57(4):421–457, 1969.

158. A. Stevens and P. Coupe. Distortions in judged spatial rela-
tions. Cognitive Psychology, 10:422–437, 1978.

159. M. Stiff, S. Chandra, T. Ball, K. Kunchithapadam, and
T. Reps. Coping with type casts in C. Technical Report
Technical Report BL0113590-990202-03, Bell Laboratories,
1999.

160. L. A. Streeter, J. M. Ackroff, and G. A. Taylor. On abbreviat-
ing command names. The Bell System Technical Journal,
62(6):1807–1826, 1983.

161. D. W. Sweeney. An analysis of floating-point addition. IBM
Systems Journal, 4(1):31–42, 1965.

162. P. F. Sweeney and F. Tip. A study of dead data members in
C++ applications. In Proceedings of the 1998 ACM Confer-
ence on Programming Language Design and Implementa-
tion, pages 324–332, June 1998.

163. J. Thiyagalingam. Alternative Array Storage Layout for Reg-
ular Scientific Programs. PhD thesis, Imperial College, Uni-
versity of London, June 2005.

164. J. Thiyagalingam, O. Beckmann, and P. H. J. Kelly. Is Morton
layout competitive for large two-dimensional arrays, yet?
Concurrency and Computation: Practice & Experience,
18(11):1509–1539, Sept. 2006.

165. P. Thompson. Margaret Thatcher: a new illusion. Perception,
9:483–484, 1980.

166. A. Treisman and J. Souther. Search asymmetry: A diagnos-
tic for preattentive processing of separable features. Jour-
nal of Experimental Psychology: General, 114(3):285–310,
1985.

167. L. M. Trick and Z. W. Pylyshyn. What enumeration studies
can show us about spatial attention: Evidence for limited ca-
pacity preattentive processing. Journal of Experimental Psy-
chology: Human Perception and Performance, 19(2):331–
351, 1993.

168. J. Turley. Embedded processors. www.extremetech.com,
Jan. 2002.

169. A. Tversky and I. Simonson. Context-dependent preferences.
In D. Kahneman and A. Tversky, editors, Choices, Values,
and Frames, chapter 29, pages 518–527. Cambridge Uni-
versity Press, 1999.

170. G.-R. Uh and D. B. Whalley. Effectively exploiting indirect
jumps. Software–Practice and Experience, 29(12):1061–
1101, Oct. 1999.

171. Unisys Corporation. Architecture MCP/AS (Extended).
Unisys Corporation, 3950 8932-100 edition, 1994.

172. C. Ware. Information Visualization Perception for Design.
Morgan Kaufmann Publishers, 2000.

173. R. Wheeldon and S. Counsell. Power law distributions in
class relationships. In Third International Workshop on
Source Code Analysis and Manipulation (SCAM 2003),
pages 45–54, Sept. 2003.

174. J. Yang and R. Gupta. Frequent value locality and its applica-
tions. ACM Transactions on Embedded Computing Systems,
2(3):1–27, 2002.

175. J. J. Yi and D. J. Lilja. Improving processor performance by
simplifying and bypassing trivial computations. In Interna-
tional Conference on Computer Design (ICCD’02), pages
462–467, Sept. 2002.

v 1.1 January 30, 2008

www.redhillconsulting.com.au
www.extremetech.com

