
The New C Standard (Vision)

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002-2008 Derek M. Jones. All rights reserved.

CHANGES-5

CHANGES

-5Copyright © 2005, 2008 Derek Jones
The material in the C99 subsections is copyright © ISO. The material in the C90 and C++ sections that is
quoted from the respective language standards is copyright © ISO.
Credits and permissions for quoted material is given where that material appears.
THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE PARTICULAR WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN.

Commentary
The phrase at the time of writing is sometimes used. For this version of the material this time should be taken
to mean no later than December 2008.

29 Jan 2008 1.1 Integrated in changes made by TC3, required C sentence renumbering.
60+ recent references added + associated commentary.
A few Usage figures and tables added.
Page layout improvements. Lots of grammar fixes.

5 Aug 2005 1.0b Many hyperlinks added. pdf searching through page 782 speeded up.
Various typos fixed (over 70% reported by Tom Plum).

16 Jun 2005 1.0a Improvements to character set discussion (thanks to Kent Karlsson), margin
references, C99 footnote number typos, and various other typos fixed.

30 May 2005 1.0 Initial release.

v 1.1 January 30, 2008

CHANGES 770

770
token

syntax
preprocess-

ing token
syntaxtoken:

keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

1. Early vision 4
1.1. Preattentive processing . 5
1.2. Gestalt principles . 6
1.3. Edge detection . 9
1.4. Reading practice . 10
1.5. Distinguishing features . 11
1.6. Visual capacity limits . 11

2. Reading (eye movement) 11
2.1. Models of reading . 15

2.1.1. Mr. Chips . 16
2.1.2. The E-Z Reader model . 17
2.1.3. EMMA. .17

2.2. Individual word reading (English, French, and more?) . 18
2.3. White space between words . 20

2.3.1. Relative spacing . 22
2.4. Other visual and reading issues . 23

3. Kinds of reading 23

Commentary

Tokens (preprocessor or otherwise) are the atoms from which the substance of programs are built. Prepro-
cessing tokens are created in translation phase 3 and are turned into tokens in translation phase 7.

transla-
tion phase
3
transla-
tion phase
7

All characters in the basic source character set can be used to form some kind of preprocessing token
that is defined by the standard. When creating preprocessing tokens the first non-white-space character is
sufficient, in all but one case, to determine the kind of preprocessing token being created. punctuator

syntax
header name
syntaxThe two characters, double-quote and single-quote, must occur with their respective matching character if

they are to form a defined preprocessor-token. The special case of them occurring singly, which matches
against “non-white-space character that cannot be one of the above,” is dealt with below. The other cases that character

’ or " matches

match against non-white-space character that cannot be one of the above involve characters
that are outside of the basic source character set. A program containing such extended characters need not basic source

character set
extended
charactersresult in a constraint violation, provided the implementation supports such characters. For instance, they
preprocess-
ing token
shall have lexical
form

could be stringized prior to translation phase 7, or they could be part of a preprocessor-token sequence being

#
operator

skipped as part of a conditional compilation directive.
The header-name preprocessing token is context-dependent and only occurs in the #include preprocessing

directive. It never occurs after translation phase 4. #include
h-char-sequence

January 30, 2008 v 1.1 201

CHANGES 1 Early vision770

C90
The non-terminal operator was included as both a token and preprocessing-token in the C90 Standard.
Tokens that were operators in C90 have been added to the list of punctuators in C99.

C++

C++ maintains the C90 distinction between operators and punctuators. C++ also classifies what C calls a
constant as a literal, a string-literal as a literal and a C character-constant is known as a character-literal.

Other Languages
Few other language definitions include a preprocessor. The PL/1 preprocessor includes syntax that supports
some statements having the same syntax as the language to be executed during translation.

Some languages (e.g., PL/1) do not distinguish between keywords and identifiers. The context in which a
name occurs is used to select the usage to which it is put. Other languages (e.g., Algol 60) use, conceptually,
one character set for keywords and another for other tokens. In practice only one character set is available. In
books and papers the convention of printing keywords in bold was adopted. A variety of conventions were
used for writing Algol keywords in source, including using an underline facility in the character encodings,
using matching single-quote characters, or simply all uppercase letters.

Common Implementations
The handling of “each non-white-space character that cannot be one of the above” varies between imple-
mentations. In most cases an occurrence of such a preprocessing token leads to a syntax or constraint
violation.

Coding Guidelines
Most developers are not aware of that preprocessing-tokens exist. They think in terms of a single classification
of tokens— the token. The distinction only really becomes noticeable when preprocessing-tokens that are not
also tokens occur in the source. This can occur for pp-number and the “each non-white-space character thatpp-number

syntax

cannot be one of the above” and is discussed elsewhere. There does not appear to be a worthwhile benefit inpreprocess-
ing token

syntax

770

educating developers about preprocessing-tokens.
Summary
The following two sections provide background on those low-level visual processing operations that might

be applicable to source code. The first section covers what is sometimes called early vision. This phase of
vision is carried out without apparent effort. The possibilities for organizing the visual appearance of source
code to enable it to be visually processed with no apparent effort are discussed. At this level the impact
of individual characters is not considered, only the outline image formed by sequences (either vertically
or horizontally) of characters. The second section covers eye movement in reading. This deals with the
processing of individual, horizontal sequences of characters. To some extent the form of these sequences
is under the control of the developer. Identifiers (whose spelling is under developer-control) and space
characters make up a large percentage of the characters on a line.

The early vision factors that appear applicable to C source code are proximity, edge detection, and
distinguishing features. The factors affecting eye movement in reading are practice related. More frequentlyreading

practice
770

letter de-
tection

770 encountered words are processed more quickly and knowledge of the frequency of letter sequences is used to
decide where to move the eyes next.

The discussion assumes a 2-D visual representation; although 3-D visualization systems have been
developed[38] they are still in their infancy.

1 Early vision
One of the methods used by these coding guidelines to achieve their stated purpose is to make recommen-vision

early
coding

guidelines
introduction

dations that reduce the cognitive load needed to read source code. This section provides an overview of
some of the operations the human visual system can perform without requiring any apparent effort. The
experimental evidence[32] suggests that the reason these operations do not create a cognitive load is that they
occur before the visual stimulus is processed by the human cognitive system. The operations occur in what is

202 v 1.1 January 30, 2008

1 Early vision CHANGES 770

orientation curved/straight shape

shape size mixed

color enclosure number

addition juncture parallelism

Figure 770.1: Examples of features that may be preattentively processed (parallel lines and the junction of two lines are the odd
ones out). Adapted from Ware.[43]

known as early vision. Knowledge of these operations may be of use in deciding how to organize the visible
appearance of token sequences (source code layout).

The display source code uses a subset of the possible visual operations that occur in nature. It is nonmoving,
two-dimensional, generally uses only two colors, items are fully visible (they are not overlayed), and edges
are rarely curved. The texture of the display is provided by the 96 characters of the source character set (in source char-

acter set
many cases a limited number of additional characters are also used). Given that human visual processing is
tuned to extract important information from natural scenes,[15] it is to be expected that many optimized visual
processes will not be applicable to viewing source code.

1.1 Preattentive processing
Some inputs to the human visual system appear to pop-out from their surroundings. Preattentive processing, vision

preattentiveso called because it occurs before conscious attention, is automatic and apparently effortless. The examples
in Figure 770.1 show some examples of features that pop-out at the reader.

Preattentive processing is independent of the number of distractors; a search for the feature takes the same
amount of time whether it occurs with one, five, ten, or more other distractors. However, the disadvantage
is that it is only effective when the features being searched for are relatively rare. When a display contains
many different, distinct features (the mixed category in Figure 770.1), the pop-out effect does not occur. The
processing abilities demonstrated in Figure 770.1 are not generally applicable to C source code for a number
of reasons.

• C source code is represented using a fixed set of characters. Opportunities for introducing graphical basic source
character set

effects into source code are limited. The only, universally available technique for controlling the visual
appearance of source code is white space.

• While there are circumstances when a developer might want to attend to a particular identifier, or
declaration, in general there are no constructs that need to pop-out to all readers of the source. Program

January 30, 2008 v 1.1 203

CHANGES 1 Early vision770

Figure 770.2: Proximity— the horizontal distance between the dots in the upper left image is less than the vertical
distance, causing them to be perceptually grouped into lines (the relative distances are reversed in the upper right image).

development environments may highlight (using different colors) searched for constructs, dependencies
between constructs, or alternative representations (for instance, call graphs), but these are temporary
requirements that change over short periods of time, as the developer attempts to comprehend source
code.

1.2 Gestalt principles
Founded in 1912 the Gestalt school of psychology proposed what has become known as the Gestalt laws ofgestalt principles

perception (gestalt means pattern in German); they are also known as the laws of perceptual organization.
The underlying idea is that the whole is different from the sum of its parts. These so-called laws do not have
the rigour expected of a scientific law, and really ought to be called by some other term (e.g., principle). The
following are some of the more commonly occurring principles

• Proximity: Elements that are close together are perceptually grouped together (see Figure 770.2).

• Similarity: Elements that share a common attribute can be perceptually grouped together (see Fig-
ure 770.3).

• Continuity, also known as Good continuation: Lines and edges that can be seen as smooth andcontinuation
gestalt principle of continuous are perceptually grouped together (see Figure 770.4).

• Closure: Elements that form a closed figure are perceptually grouped together (see Figure 770.5).

• Symmetry: Treating two, mirror image lines as though they form the outline of an object (see
Figure 770.6). This effect can also occur for parallel lines.

• Other principles include grouping by connectedness, grouping by common region, and synchrony.[27]

The organization of visual grouping of elements in a display, using these principles, is a common human trait.
However, when the elements in a display contain instances of more than one of these perceptual organization
principles, people differ in their implicit selection of principle used. A study by Quinlan and Wilton[33]

found that 50% of subjects grouped the elements in Figure 770.7 by proximity and 50% by similarity. They
proposed the following, rather incomplete, algorithm for deciding how to group elements:

1. Proximity is used to initially group elements.

204 v 1.1 January 30, 2008

1 Early vision CHANGES 770

color

size

orientation

differ by 180

differ by 45

Figure 770.3: Similarity— a variety of dimensions along which visual items can differ sufficiently to cause them to be
perceived as being distinct; rotating two line segments by 180° does not create as big a perceived difference as rotating
them by 45°.

Figure 770.4: Continuity— upper image is perceived as two curved lines; the lower-left image is perceived as a curved
line overlapping a rectangle rather than an angular line overlapping a rectangle having a piece missing (lower-right image).

Figure 770.5: Closure— when the two perceived lines in the upper image of Figure 770.4 are joined at their end, the
perception changes to one of two cone-shaped objects.

January 30, 2008 v 1.1 205

CHANGES 1 Early vision770

Figure 770.6: Symmetry and parallelism— where the direction taken by one line follows the same pattern of behavior as
another line.

no proximity

proximity only

color only

shape only

near to different shape

near to same shape

conflict

near to same color

Figure 770.7: Conflict between proximity, color, and shape. Based on Quinlan.[33]

2. If there is a within-group attribute mismatch, but a match between groups, people select between either
a proximity or a similarity grouping (near to different shape in Figure 770.7).

3. If there is a within-group and between-group attribute mismatch, then proximity is ignored. Grouping is
then often based on color rather than shape (near to same color and near to same shape in Figure 770.7).

Recent work by Kubovy and Gepshtein[19] has tried to formulate an equation for predicting the grouping
of rows of dots. Will the grouping be based on proximity or similarity? They found a logarithmic relationship
between dot distance and brightness that is a good predictor of which grouping will be used.

The symbols available to developers writing C source provide some degree of flexibility in the control of
its visual appearance. The appearance is also affected by parameters outside of the developers’ control—
for instance, line and intercharacter spacing. While developers may attempt to delineate sections of source
using white space and comments, the visual impact of the results do not usually match what is immediately
apparent in the examples of the Gestalt principles given above. While instances of these principles may be
used in laying out particular sequences of code, there is no obvious way of using them to create generalized
layout rules. The alleged benefits of particular source layout schemes invariably depend on practice (a cost).reading

practice
770

The Gestalt principles are preprogrammed (i.e., there is no conscious cognitive cost). These coding guidelines
cannot perform a cost/benefit analysis of the various code layout rules because your author knows of no
studies, using experienced developers, investigating this topic.

206 v 1.1 January 30, 2008

1 Early vision CHANGES 770

Image

Edge
Detection

Edge
Map

Region
Formation

Region
Map

Figure
Ground

Entry
Level
Units

Grouping

Superordinate
Units

Parsing

Subordinate
Units

Figure 770.8: A flowchart of Palmer and Rock’s[27] theory of perceptual organization.

1.3 Edge detection
The striate cortex is the visual receiving area of the brain. Neurons within this area respond selectively to the Edge detection

orientation of edges, the direction of stimulus movement, color along several directions, and other visual
stimuli. In Palmer and Rock’s[27] theory of perceptual organization, edge detection is the first operation
performed on the signal that appears as input to the human visual system. After edges are detected, regions
are formed, and then figure–ground principles operate to form entry-level units (see Figure 770.8).

C source is read from left to right, top to bottom. It is common practice to precede the first non-white-space
character on a sequence of lines to start at the same horizontal position. This usage has been found to reduce
the effort needed to visually process lines of code that share something in common; for instance, statement
indentation is usually used to indicate block nesting.

Edge detection would appear to be an operation that people can perform with no apparent effort. An edge
can also be used to speed up the search for an item if it occurs along an edge. In the following sequences of
declarations, less effort is required to find a particular identifier in the second two blocks of declarations. In
the first block the reader first has to scan a sequence of tokens to locate the identifier being declared. In the
other two blocks the locations of the identifiers are readily apparent. Use of edges is only part of the analysis
that needs to be carried out when deciding what layout is likely to minimize cognitive effort. These analyses
are given for various constructs elsewhere. statement

visual layout
declaration
visual layout

1 /* First block. */
2 int glob;
3 unsigned long a_var;
4 const signed char ch;
5 volatile int clock_val;
6 void *free_mem;
7 void *mem_free;
8

9 /* Second block. */
10 int glob;
11 unsigned long a_var;
12 const signed char ch;
13 volatile int clock_val;
14 void * free_mem;
15 void *mem_free;
16

17 /* Third block. */
18 int glob;
19 unsigned long a_var;
20 const signed char ch;
21 volatile int clock_val;

January 30, 2008 v 1.1 207

CHANGES 1 Early vision770

Pages read

R
ea

di
ng

 ti
m

e
(m

in
s)

1

2

4

8

16

0 2 4 8 16 32 64 128 256

inverted text

inverted text (year later)

normal text

normal text (year later)

Figure 770.9: The time taken for subjects to read a page of text in a particular orientation, as they read more pages. Results are
for the same six subjects in two tests more than a year apart. Based on Kolers.[17]

22 void * free_mem;
23 void *mem_free;

Searching is only one of the visual operations performed on source. Systematic line-by-line, token-by-tokenreading
kinds of

770

reading is another. The extent to which the potentially large quantities of white space introduced to create
edges increases the effort required for systematic reading is unknown. For instance, the second block
(previous code example) maintains the edge at the start of the lines at which systematic reading would start,
but at the cost of requiring a large saccade to the identifier. The third block only requires a small saccade toSaccade 770

the identifier, but there is no edge to aid in the location of the start of a line.

1.4 Reading practice
A study by Kolers and Perkins[18] offers some insight into the power of extended practice. In this studyreading practice

expertise subjects were asked to read pages of text written in various ways; pages contained, normal, reversed, inverted,
or mirrored text.

Expectations can also mislead us; the unexpected is always hard to
perceive clearly. Sometimes we fail to recognize an object because we
saw tI .eb ot serad eh sa yzal sa si nam yreve taht dias ecno nosremE
si tI .ekam ot detcepxe eb thgim natiruP dnalgnE weN a ekatsim fo dnik eht
These are but a few of the reasons for believing that a
person cannot be conscious of all his mental processes.
Many other reasons can be

Severalyearsagoaprofessorwhoteachespsychologyata
largeuniversityhadtoaskhisassistant,ayoungmanofgreat
intelligence

The time taken for subjects to read a page of text in a particular orientation was measured. The more
pages subjects read, the faster they became. This is an example of the power law of learning. A year laterpower law

of learning
Kolers[17] measured the performance of the same subjects, as they read more pages. Performance improved
with practice, but this time the subjects had past experience and their performance started out better and
improved more quickly (see Figure 770.9). These results are similar to those obtained in the letter-detectionletter de-

tection
770

task.
Just as people can learn to read text written in various ways, developers can learn to read source code

laid out in various ways. The important issue is not developers’ performance with a source code layout they
have extensive experience reading, but their performance on a layout they have little experience reading. Forreading

practice
770

instance, how quickly can they achieve a reading performance comparable to that achieved with a familiar
layout (based on reading and error rate). The ideal source code layout is one that can be quickly learned and
has a low error rate (compared with other layouts).

208 v 1.1 January 30, 2008

2 Reading (eye movement) CHANGES 770

Unfortunately there are no studies, using experienced developers, that compare the effects of different
source code layout on reading performance. Becoming an experienced developer can be said to involve
learning to read source that has been laid out in a number of different ways. The visually based guidelines in
this book do not attempt to achieve an optimum layout, rather they attempt to steer developers away from
layouts that are likely to be have high error rates.

Many developers believe that the layout used for their own source code is optimal for reading by themselves,
and others. It may be true that the layout used is optimal for the developer who uses it, but the reason for this
is likely to be practice-based rather than any intrinsic visual properties of the source layout. Other issues
associated with visual code layout are discussed in more detail elsewhere. declaration

visual layout
statement
visual layout1.5 Distinguishing features

A number of studies have found that people are more likely to notice the presence of a distinguishing feature distinguish-
ing featuresthan the absence of a distinguishing feature. This characteristic affects performance when searching for an

item when it occurs among visually similar items. It can also affect reading performance— for instance,
substituting an e for a c is more likely to be noticed than substituting a c for an e.

A study by Treisman and Souther[40] found that visual searches were performed in parallel when the target
included a unique feature (search time was not affected by the number of background items), and searches
were serial when the target had a unique feature missing (search time was proportional to the number of
background items). These results were consistent with Treisman and Gelade’s[41] feature-integration theory.

What is a unique feature? Treisman and Souther investigated this issue by having subjects search for
circles that differed in the presence or absence of a gap (see Figure 770.10). The results showed that subjects
were able to locate a circle containing a gap, in the presence of complete circles, in parallel. However,
searching for a complete circle, in the presence of circles with gaps, was carried out serially. In this case the
gap was the unique feature. Performance also depended on the proportion of the circle taken up by the gap.

As discussed in previous subsections, C source code is made up of a fixed number of different characters.
This restricts the opportunities for organizing source to take advantage of the search asymmetry of preattentive
processing. It is important to remember the preattentive nature of parallel searching; for instance, comments
are sometimes used to signal the presence of some construct. Reading the contents of these comments would
require attention. It is only their visual presence that can be a distinguishing feature from the point of view of
preattentive processing. The same consideration applies to any organizational layout using space characters.
It is the visual appearance, not the semantic content that is important.

1.6 Visual capacity limits
A number of studies have looked at the capacity limits of visual processing.[13, 42] Source code is visually
static, that is it does not move under the influence of external factors (such as the output of a dynamic trace
of an executing program might). These coding guidelines make the assumption that the developer-capacity
bottleneck occurs at the semantic level, not the visual processing stage.

2 Reading (eye movement)
While C source code is defined in terms of a sequence of ordered lines containing an ordered sequence of Reading

eye movementcharacters, it is rarely read that way by developers. There is no generally accepted theory for how developers
read source code, at the token level, so the following discussion is necessarily broad and lacking in detail. Are
there any organizational principles of developers’ visual input that can be also be used as visual organizational
principles for C source code?

Developers talk of reading source code; however, reading C source code differs from reading human
language prose in many significant ways, including:

• It is possible, even necessary, to create new words (identifiers). The properties associated with these
words are decided on by the author of the code. These words might only be used within small regions of
text (their scope); their meaning (type) and spelling are also under the control of the original developer.

January 30, 2008 v 1.1 209

CHANGES 2 Reading (eye movement)770

Number of items in display

Se
ar

ch
 ti

m
e

(m
s)

200

400

600

800

1000

1200

1 6 12

•

•

•

• • •

Number of items in display

1200

1 6 12 1 6 12 1 6 12

gap size 1/2 gap size 1/4 gap size 1/8

• •
•

• •
• •

•

•

• •
• •

•

•

• •
•

• •
closed circle (negative)

closed circle (positive)

• •open circle (negative)

closed circle (positive)

Figure 770.10: Examples of unique items among visually similar items. Those at the top include an item that has a distinguishing
feature (a vertical line or a gap); those underneath them include an item that is missing this distinguishing feature. Graphs
represent time taken to locate unique items (positive if it is present, negative when it is not present) when placed among different
numbers of visibly similar distractors. Based on displays used in the study by Treisman and Sother.[40]

210 v 1.1 January 30, 2008

2 Reading (eye movement) CHANGES 770

• Although C syntax specifies a left-to-right reading order (which is invariably presented in lines that
read from the top, down), developers sometimes find it easier to comprehend statements using either a
right-to-left reading, or even by starting at some subcomponent and working out (to the left and right)
or lines reading from the bottom, up.

• Source code is not designed to be a spoken language; it is rare for more than short snippets to be
verbalized. Without listeners, developers have not needed to learn to live (write code) within the
constraints imposed by realtime communication between capacity-limited parties.

• The C syntax is not locally ambiguous. It is always possible to deduce the syntactic context, in C,
using a lookahead of a single word770.1 (the visible source may be ambiguous through the use of the
preprocessor, but such usage is rare and strongly recommended against). This statement is not true in
C++ where it is possible to write source that requires looking ahead an indefinite number of words to
disambiguate a localized context.

• In any context a word has a single meaning. For instance, it is not necessary to know the meaning (after
preprocessing) of a, b and c, to comprehend a=b+c. This statement is not true in computer languages
that support overloading, for instance C++ and Java.

• Source code denotes operations on an abstract machine. Individually the operations have no external
meaning, but sequences of these operations can be interpreted as having an equivalence to a model of
some external real-world construct. For instance, the expression a=b+c specifies the abstract machine
operations of adding b to c and storing the resulting value in a; its interpretation (as part of a larger
sequence of operations) might be move on to the next line of output. It is this semantic mapping that
creates cognitive load while reading source code. When reading prose the cognitive load is created
by the need to disambiguate word meaning and deduce a parse using known (English or otherwise)
syntax.

Reading and writing is a human invention, which until recently few people could perform. Consequently,
human visual processing has not faced evolutionary pressure to be good at reading.

While there are many differences between reading code and prose, almost no research has been done on
reading code and a great deal of research has been done on reading prose. The models of reading that have
been built, based on the results of prose-related research, provide a starting point for creating a list of issues
that need to be considered in building an accurate model of code reading. The following discussion is based
on papers by Rayner[34] and Reichle, Rayner, and Pollatsek.[36]

During reading, a person’s eyes make short rapid movements. These movements are called saccades and Saccade

take 20 ms to 50 ms to complete. No visual information is extracted during these saccades and readers are not
consciously aware that they occur. A saccade typically moves the eyes forward 6 to 9 characters. Between
saccades the eyes are stationary, typically for 200 ms to 250 ms (a study of consumer eye movements[29]

while comparing multiple brands found a fixation duration of 354 ms when subjects were under high time
pressure and 431 ms when under low time pressure). These stationary time periods are called fixations.
Reading can be compared to watching a film. In both cases a stationary image is available for information
extraction before it is replaced by another (4–5 times a second in one case, 50–60 times a second in the
other). However, in the case of a film the updating of individual images is handled by the projector while the
film’s director decides what to look at next; but during reading a person needs to decide what to look at next
and move the eyes to that location.

The same reader can show considerable variation in performing these actions. Saccades might move
the eyes by one character, or 15 to 20 characters (the duration of a saccade is influenced by the distance
covered, measured in degrees). Fixations can be shorter than 100 ms or longer than 400 ms (they can also
vary between languages[25]). The content of the fixated text has a strong effect on reader performance.

770.1There is one exception—for the token sequence void func (a, b, c, d, e, f, g). It is not known whether func is a
declaration of a prototype or a function definition until the token after the closing parenthesis is seen.

January 30, 2008 v 1.1 211

CHANGES 2 Reading (eye movement)770

Roadside joggers endure sweat, pain and angry drivers in the name of

1
286

2
221

3
246

4
277

5
256

6
233

7
216

8
188

fitness. A healthy body may seem reward enough for most people. However,

9
301

10
177

12
196

13
175

11
244

14
302

15
112

16
177

17
266

18
188

19
199

for all those who question the payoff, some recent research on physical

21 20 22 23 24 25 26 27

activity and creativity has provided some surprisingly good news. Regular

29
201

28
66

30
201

31
188

32
203

33
220

34
217

35
288

36
212

37
75

Figure 770.11: A passage of text with eye fixation position (dot under word), fixation sequence number, and fixation duration (in
milliseconds) included. Adapted from Reichle, Pollatsek, Fisher, and Rayner[35] (timings on the third line are missing in the
original).

The eyes do not always move forward during reading— 10% to 15% of saccades move the eyes back
to previous parts of the text. These backward movements, called regressions, are caused by problems with
linguistic processing (e.g., incorrect syntactic analysis of a sentence) and oculomotor error (for instance, thegarden path

sentence
770

eyes overshot their intended target).
Saccades are necessary because the eyes’ field of view is limited. Light entering the eyes falls on thevisual field

retina, where it hits light-sensitive cells. These cells are not uniformly distributed, but are more densely
packed in the center of the retina. This distribution of light sensitive cells divides the visual field (on the
retina) into three regions: foveal (the central 2°s, measured from the front of the eye looking toward the
retina), parafoveal (extending out to 5°s), and peripheral (everything else). Letters become increasingly
difficult to identify as their angular distance from the center of the fovea increases.

A reader has to perform two processes during the fixation period: (1) identify the word (or sequence of
letters forming a partial word) whose image falls within the foveal and (2) plan the next saccade (when to
make it and where to move the eyes). Reading performance is speed limited by the need to plan and perform
saccades. If the need to saccade is removed by presenting words at the same place on a display, there is a
threefold speed increase in reading aloud and a twofold speed increase in silent reading. The time needed to
plan and perform a saccade is approximately 180 ms to 200 ms (known as the saccade latency), which means
that the decision to make a saccade occurs within the first 100 ms of a fixation. How does a reader make a
good saccade decision in such a short period of time?

The contents of the parafoveal region are partially processed during reading. The parafoveal region
increases a reader’s perceptual span. When reading words written using alphabetic characters (e.g., English
or German), the perceptual span extends from 3 to 4 characters on the left of fixation to 14 to 15 letters to
the right of fixation. This asymmetry in the perceptual span is a result of the direction of reading, attending
to letters likely to occur next being of greater value. Readers of Hebrew (which is read right-to-left) have
a perceptual span that has opposite asymmetry (in bilingual Hebrew/English readers the direction of the
asymmetry depends on the language being read, showing the importance of attention during reading[31]).

The process of reading has attracted a large number of studies. The following general points have been
found to hold:

• The perceptual span does not extend below the line being read. Readers’ attention is focused on the
line currently being read.

• The size of the perceptual span is fairly constant for similar alphabetic orthographies (graphical
representation of letters).

212 v 1.1 January 30, 2008

2 Reading (eye movement) CHANGES 770

• The characteristics of the writing system affect the asymmetry of the perceptual span and its width. orthography

For instance, the span can be smaller for Hebrew than English (Hebrew words can be written without
the vowels, requiring greater effort to decode and plan the next saccade). It is also much smaller for
writing systems that use ideographs, such as Japanese (approximately 6 characters to the right) and
Chinese.

• The perceptual span is not hardwired, but is attention-based. The span can become smaller when the
fixated words are difficult to process. Also readers obtain more information in the direction of reading
when the upcoming word is highly predictable (based on the preceding text).

• Orthographic and phonological processing of a word can begin prior to the word being fixated. orthography
phonology

• Words that can be identified in the parafovea do not have to be fixated and can be skipped. Predictable
words are skipped more than unpredictable words, and short function words (like the) are skipped
more than content words.

The processes that control eye movement have to decide where (to fixate next) and when (to move the eyes).
These processes sometimes overlap and are made somewhat independently (see Figure 770.11).

Where to fixate next. Decisions about where to fixate next seem to be determined largely by low-level
visual cues in the text, as follows.

• Saccade length is influenced by the length of both the fixated word and the word to the right of fixation.
• When readers do not have information about where the spaces are between upcoming words, saccade

length decreases and reading rate slows considerably.
• Although there is some variability in where the eyes land on a word, readers tend to make their first

fixation about halfway between the beginning and the middle of a word.
• While contextual constraints influence skipping (highly predictable words are skipped more than

unpredictable words), contextual constraints have little influence on where the eyes land in a word
(however, recent research[21] has found some semantic-context effects influence eye landing sites).

• The landing position on a word is strongly affected by the launch site (the previous landing position).
As the launch site moves further from the target word, the distribution of landing positions shifts to the
left and becomes more variable.

When to move the eyes. The ease or difficulty associated with processing a word influences when the eyes
move, as follows.

• There is a spillover effect associated with fixating a low-frequency word; fixation time on the next
word increases.

• Although the duration of the first fixation on a word is influenced by the frequency of that word, the
duration of the previous fixation (which was not on that word) is not.

• High-frequency words are skipped more than low-frequency words, particularly when they are short
and the reader has fixated close to the beginning of the word.

• Highly predictable (based on the preceding context) words are fixated for less time than words that are
not so predictable. The strongest effects of predictability on fixation time are not usually as large as
the strongest frequency effects. Word predictability also has a strong effect on word skipping.

2.1 Models of reading
It is generally believed that eye movements follow visual attention. This section discusses some of the models
of eye movements that have been proposed and provides some of the background theory needed to answer
questions concerning optimal layout of source code. An accurate, general-purpose model of eye movement
would enable the performance of various code layout strategies to be tested. Unfortunately, no such model is
available. This book uses features from three models, which look as if they may have some applicability to
how developers read source. For a comparison of the different models, see Reichle, Rayner and Pollatsek.[36]

January 30, 2008 v 1.1 213

CHANGES 2 Reading (eye movement)770

_ * * * _ a b o v * _ * _

Visual Data

Lexical Knowledge

word %
a 3.7
able 0.037
about 0.37
above 0.068
. .. .
the 11.0
. .. .

eye movement
accuracy

Motor Knowledge

Minimise

Entropy

saccade distance

Figure 770.12: Mr. Chips schematic. The shaded region in the visual data is the parafoveal; in this region individual letters
(indicated by stars) can only be distinguished from spaces (indicated by underscores). Based on Legge et al.[23]

2.1.1 Mr. Chips
Mr. Chips[23] is an ideal-observer model of reading (it is also the name of a computer program implementedMr. Chips

in C) which attempts to calculate the distance, measured in characters, of the next saccade. (It does not
attempt to answer the question of when the saccade will occur.) It is an idealized model of reading in
that it optimally combines three sources of information (it also includes a noise component, representing
imperfections in oculomotor control):

1. Visual data obtained by sampling the text through a retina, which has three regions mimicking the
behavior of those in the human eye.

2. Lexical knowledge, consisting of a list of words and their relative frequencies (English is used in the
published study).

3. Motor knowledge, consisting of statistical information on the accuracy of the saccades made.

Mr. Chips uses a single optimization principle— entropy minimization. All available information is used to
select a saccade distance that minimizes the uncertainty about the current word in the visual field (ties are
broken by picking the largest distance). Executing the Mr. Chips program shows it performing regressive
saccades, word skips, and selecting viewing positions in words, similar to human performance.

Mr. Chips is not intended to be a model of how humans read, but to establish the pattern of performance
when available information is used optimally. It is not proposed that readers perform entropy calculations
when planning saccades. There are simpler algorithms using a small set of heuristics that perform close to
the entropy minimization ideal (see Figure 770.12).

The eyes’ handling of visual data and the accuracy of their movement control are physical characteristics.
The lexical knowledge is a characteristic of the environment in which the reader grew up. A person has little
control over the natural language words they hear and see, and how often they occur. Source code declarations

214 v 1.1 January 30, 2008

2 Reading (eye movement) CHANGES 770

ln(word frequency)

Ti
m

e
(m

s)

0

100

200

300

400

0 2 4 6 8 10

parafoveal

preview

familiarity check

completion of

lexical access

saccadic latency
.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.

..

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 770.13: How preview benefit is affected by word frequency. The bottom line denotes the time needed to complete the
familiarity check, the middle line the completion of lexical access, and the top line when the execution of the eye movement
triggered by the familiarity check occurs. Based on Reichle, Pollatsek, Fisher, and Rayner.[35]

create new words that can then occur in subsequent parts of the source being worked on by an individual.
The characteristics of these words will be added to developers’ existing word knowledge. Whether particular,
code-specific letter sequences will be encountered sufficiently often to have any measurable impact on the
lexicon a person has built up over many years is not known (see Figure ??).

2.1.2 The E-Z Reader model
The E-Z Reader model of eye movement control in reading is described by Reichle, Pollatsek, Fisher, and
Rayner.[35] It aims to give an account of how cognitive and lexical processes influence the eye movements of
skilled readers. Within this framework it is the most comprehensive model of reading available. An important garden path

sentenceissue ignored by this model is higher order processing. (The following section describes a model that attempts
to address cognitive issues.) For instance, in the sentence “Since Jay always jogs a mile seems like a short
distance.” readers experience a disruption that is unrelated to the form or meaning of the individual words.
The reader has been led down a syntactic garden path; initially parsing the sentence so that a mile is the
object of jogs before realizing that a mile is the subject of seems. Also it does not attempt to model the
precise location of fixations.

The aspect of this model that is applicable to reading source code is the performance dependency, of
various components to the frequency of the word being processed (refer to Figure 770.11). The familiarity
check is a quick assessment or whether word identification is imminent, while completion of lexical access
corresponds to a later stage when a word’s identity has been determined.

2.1.3 EMMA
EMMA [37] is a domain-independent model that relates higher-level cognitive processes and attention shifts EMMA

with lower-level eye movement behavior. EMMA is based on many of the ideas in the E-Z model and
uses ACT-R[1] to model cognitive processes. EMMA is not specific to reading and has been applied to
equation-solving and visual search.

The spotlight metaphor of visual attention, used by EMMA, selects a single region of the visual field for
processing. Shifting attention to a new visual object requires that it be encoded into an internal representation.
The time, Tenc , needed to perform this encoding is:

Tenc = K(− log fi)ekθi (770.1)

January 30, 2008 v 1.1 215

CHANGES 2 Reading (eye movement)770

cognition

vision

eye-prep

eye-exec

Figure 770.14: Example case of EMMA’s control flow. Adapted from Salvucci.[37]

where fi represents the frequency of the visual object being encoded (a value between 0.0 and 1.0), θi is its
visual angle from the center of the current eye position, and K and k are constants.

The important components of this model, for these coding guidelines, are the logarithmic dependency
on word frequency and the exponential decay based on the angle subtended by the word from the center of
vision.

2.2 Individual word reading (English, French, and more?)
When presented with a single word, or the first word in a sentence, studies have found that readers tend toword

reading individ-
ual pick an eye fixation point near the center of that word. The so-called preferred viewing location is often

toward the left of center. It had been assumed that selecting such a position enabled the reader to maximize
information about the letters in the word (fixating near the center would enable a reader to get the most
information out of their eye’s available field of view). Clark and O’Regan[6] performed a statistical analysis
of several English word corpuses and a French word corpus. They assumed the reader would know the first
and last letters of a word, and would have a choice of looking anywhere within a word to obtain information
on more letters. (It was assumed that reliable information on two more letters would be obtained.)

Knowing only a few of the letters of a word can create ambiguity because there is more than one, human
language, word containing those letters at a given position. For instance, some of the words matched by
s*at****d include scattered, spattered, and stationed. The results (see Figure 770.15) show that word
ambiguity is minimized by selecting two letters near the middle of the word. Clark and O’Regan do not
give any explanation for why English and French words should have this property, but they do suggest that
experienced readers of these two languages make use of this information in selecting the optimal viewing
position within a word.

There are a number of experimental results that cannot be explained by an eye viewing position theory
based only on word ambiguity minimization. For instance, the word frequency effect shows that high-word fre-

quency
frequency words are more easily recognized than low-frequency words. The ambiguity data shows the
opposite effect. While there must be other reading processes at work, Clark and O’Regan propose that
ambiguity minimization is a strong contributor to the optimal viewing position.

The need to read individual identifiers in source code occurs in a number of situations. Developers may
scan down a list of identifiers looking for (1) the declaration of a particular identifier (where it is likely to be
the last sequence of letters on a line) or (2) a modification of a particular identifier (where it is likely to be the
first non-space character on a line).

If developers have learned that looking at the middle of a word maximizes their information gain when
reading English text, it is likely this behavior will be transferred to reading source code. Identifiers in source
code are rarely existing, human language, words. The extent to which experienced developers learn to modify
their eye movements (if any modification is necessary) when reading source code is unknown. If we assume
there is no significant change in eye movement behavior on encountering identifiers in source code, it can be
used to predict the immediate information available to a developer on first seeing an identifier. Knowing
this information makes it possible to select identifier spellings to minimize ambiguity with respect to other

216 v 1.1 January 30, 2008

2 Reading (eye movement) CHANGES 770

Fixation location relative to word center

A
m

bi
gu

ity

1.2

1.6

2

2.4

2.8

-4 -3 -2 -1 0 1 2 3 4

11 letters

•

•
• •

•

•

•10 letters•

•
• •

•

•9 letters
•

• •
•

•
8 letters•

• •

•

•

7 letters•

•

•

•

6 letters
•

•

•

5 letters
• •

Figure 770.15: The ambiguity of patterns defined by the first and last letter and an interior letter pair, as a function of the position
of the first letter of the pair. Plots are for different word lengths using the 65,000 words from CLAWS[22] (as used by the aspell
tool). The fixation position is taken to be midway between the interior letter pair.

Fixation location relative to word center

A
m

bi
gu

ity

-4 -3 -2 -1 0 1 2 3 4

1

1.5

2

2.5

3

11 letters
•

• • • • •
•

•
10 letters•

• • • •
•

•

•

9 letters

•
• • •

•
•

•

8 letters• • •
•

•

•

7 letters
•

• •
•

•

6 letters
• •

•

•

5 letters• •

•

Figure 770.16: The ambiguity of source code identifiers, which can include digits as well as alphabetic characters. Plots are for
different identifier lengths. A total of 344,000 identifiers from the visible form of the .c files were used.

identifiers declared in the same program. This issue is discussed elsewhere. identifier
syntax

Calculating the ambiguity for different positions within C source code identifiers shows (see Figure 770.16)
that the ambiguity is minimized near the center of the identifier and rises rapidly toward the end. However,
there is a much smaller increase in ambiguity, compared to English words, moving toward the beginning
of the identifier. Why English speakers and developers (the source code used for these measurements is
likely to be predominantly written by English speakers but not necessarily native speakers) should create
words/identifiers with this ambiguity minimization property is not known.

If native-English speakers do use four letters worth of information to guide identifier lookup, will they be
misled by their knowledge of English words? Of the 344,000 unique identifiers (41.6% contained between 5
and 11 characters) in the .c files, only 0.45% corresponded to words in the CLAWS list of 65,000 words. The
letter pattern counts showed the words containing a total of 303,518 patterns, to which the list of identifiers
added an additional 1,576,532 patterns. The identifiers contained letters that matched against 166,574 word
patterns (9.5% for center pair) and matched against 608,471 patterns that were unique to identifiers (8.1% for
center pair).

These results show that more than 80% of letter patterns appearing in identifiers do not appear in English
words. Also, identifier letter patterns are three times more likely to match against a pattern that is unique to
identifiers than a pattern that occurs in an English word. In most cases developers will not be misled into
thinking of an English word because four-letter patterns in identifiers do not frequently occur in English

January 30, 2008 v 1.1 217

CHANGES 2 Reading (eye movement)770

words.

2.3 White space between words

The use of white space between tokens in source code is a controversial subject. The use of white space iswords
white space be-
tween said to affect readability, however that might be measured. The different reasons a developer has for reading

source code, and the likely strategies adopted are discussed elsewhere.reading
kinds of

770

Is the cost of ownership of source code that contains a space character, where permitted, between every
identifier and operator/punctuator770.2 less than or greater than the cost of ownership of source code that does
not contain such space characters? This subsection discusses the issues; however, it fails to reach a definitive
conclusion.

Readers of English take it for granted that a space appears between every word in a line of text. This was
not always the case. Spaces between words started to be used during the time of Charlemagne (742–814);
however, as late as the seventeenth century there was still some irregularity in how spaces were used to
separate letters.[3] The spread of Latin to those less familiar with it, and the availability of books (through the
introduction of the printing press) to people less skilled in reading, created a user-interface problem. Spaces
between words simplified life for occasional users of Latin and improved the user friendliness of books for
intermittent readers. The written form of some languages do not insert spaces between words (e.g., Japanese
and Thai), while other written forms add some spaces but also merge sequences of words to form a single
long word (e.g., German and Dutch). Algorithms for automating the process of separating words in unspaced
text is an active research topic.[26]

ReadersofEnglishdonotneedspacesbetweenwords.Isitsimplylackofpracticethatreducesreadingrate?Thestu dy-
byKolers[18]showedwhatcouldbeachievedwithpractice.Readersofsourcecodedonotneedspaceseither(inafe wcon-
textsthesyntaxrequiresthem)a=b+c. The difference between English prose and source code is that identifier
words are always separated by other words (operators and punctuation) represented by characters that cannot
occur in an identifier.

A study by Epelboim, Booth, Ashkenazy, Taleghani, and Steinmans[12] did not just simply remove the
spaces from between words, they also added a variety of different characters between the words (shaded
boxes, digits, lowercase Greek letters, or lowercase Latin letters). Subjects were not given any significant
training on reading the different kinds of material.

Epelboim[12]

The following filler-placements were used (examples with digit fillers are shown in parentheses):

1. Normal: Normal text (this is an example);

2. Begin: A filler at the beginning of each word, spaces preserved (1this 3is 7an 2example);

3. End: A filler after the end of each word, spaces preserved (this1 is3 an7 example2);

4. Surround: Fillers surrounding each word, spaces preserved (9this1 4is3 6an7 8example2);

5. Fill-1: A filler filling each space (9this2is5an8example4);

6. Fill-2: Two fillers filling each space (42this54is89an72example39);

7. Unspaced: Spaces removed, no fillers (thisisanexample).

770.2In some cases a space character is required between tokens; for instance, the character sequence const int i would be treated as
a single identifier if the space characters were not included.

218 v 1.1 January 30, 2008

2 Reading (eye movement) CHANGES 770

Table 770.1: Mean percentage differences, compared to normal, in reading times (silent or aloud); the values in parenthesis are
the range of differences. Adapted from Epelboim.[12]

Filler type Surround Fill-1 Fill-2 Unspaced

Shaded boxes (aloud) 4 (1–12) — 3 (-2–9) 44 (25–60)
Digits (aloud) 26 (15–40) 26 (10–42) — 42 (19–64)
Digits (silent) 40 (32–55) 41 (32–58) — 52 (45–63)
Greek letters (aloud) 33 (20–47) 36 (23–45) 46 (33–57) 44 (32–53)
Latin letters (aloud) 55 (44–70) — 74 (58–84) 43 (13–58)
Latin letters (silent) 66 (51–75) 75 (68–81) — 45 (33–60)

Epelboim et al. interpreted their results as showing that fillers slowed reading because they interfered
with the recognition of words, not because they obscured word-length information (some models of reading
propose that word length is used by low-level visual processing to calculate the distance of the next saccade).
They concluded that word-length information obtained by a low-level visual process that detects spaces, if
used at all, was only one of many sources of information used to calculate efficient reading saccade distances.

Digits are sometimes used in source code identifiers as part of the identifier. These results suggest that
digits appearing within an identifier could disrupt the reading of its complete name (assuming that the digits
separated two familiar letter sequences). The performance difference when Greek letters were used as
separators was not as bad as for Latin letters, but worse than digits. The reason might relate to the relative
unfamiliarity of Greek letters, or their greater visual similarity to Latin letters (the letters α , δ, θ, µ, π, σ,
τ , and φ were used). The following are several problems with applying the results of this study to reading
source code.

• Although subjects were tested for their comprehension of the contents of the text (the results of
anybody scoring less than 75% were excluded, the mean for those included was 89.4%), they were
not tested for correctly reading the filler characters. In the case of source code the operators and
punctuators between words contribute to the semantics of what is being read; usually it is necessary to
pay attention to them.

• Many of the character sequences (a single character for those most commonly seen) used to represent
C operators and punctuators are rarely seen in prose. There contribution to the entropy measure
used to calculate saccade distances is unknown. For experienced developers the more commonly
seen character sequences, which are also short, may eventually start to exhibit high-frequency word
characteristics (i.e., being skipped if they appear in the parafoveal).

• Subjects were untrained. To what extent would training bring their performance up to a level compara-
ble to the unfilled case?

A study by Kohsom and Gobet[16] used native Thai speakers, who also spoke English, as subjects (they all
had an undergraduate degree and were currently studying at the University of Pittsburgh). The written form
of Thai does not insert spaces between words, although it does use them to delimit sentences. In the study the
time taken to read a paragraph, and the number of errors made was measured. The paragraph was in Thai or
English with and without spaces (both cases) between words. The results showed no significant performance
differences between reading spaced or unspaced Thai, but there was a large performance difference between
reading spaced and unspaced English.

This study leaves open the possibility that subjects were displaying a learned performance. While the
Thai subjects were obviously experienced readers of unspaced text in their own language, they were not
experienced readers of Thai containing spaces. The Thai subjects will have had significantly more experience
reading English text containing spaces than not containing spaces. The performance of subjects was not as
good for spaced English, their second language, as it was for Thai. Whether this difference was caused by
subjects’ different levels of practice in reading these languages, or factors specific to the language is not

January 30, 2008 v 1.1 219

CHANGES 2 Reading (eye movement)770

known. The results showed that adding spaces when subjects had learned to read without them did not have
any effect on performance. Removing spaces when subjects had learned to read with them had a significant
effect on performance.

In the case of expressions in source code, measurements show (see Table 770.2) that 47.7% of expressions
containing two binary operators do not have any space between binary operators and their operands, while
43% of such expressions have at least one space between the binary operators and their adjacent operands.

Further studies are needed before it is possible to answer the following questions:

• Would inserting a space between identifiers and adjacent operators/punctuators reduce the source
reading error rate? For instance, in a=b*c the * operator could be mistaken for the + operator (the
higher-frequency case) or & operator (the lower frequency case).

• Would inserting a space between identifiers and adjacent operators/punctuators reduce the source
reading rate? For instance, in d=e[f] the proximity of the [operator to the word e might provide
immediate semantic information (the word denotes an array) without the need for another saccade.

• What impact does adding characters to a source line have on the average source reading rate and
corresponding error rate (caused by the consequential need to add line breaks in some places)?

• Are the glyphs used for some characters sufficiently distinctive that inserting space characters aroundglyph

them has a measurable impact?

• Do some characters occur sufficiently frequently that experienced developers can distinguish them
with the same facility in spaced and unspaced contexts?letter de-

tection
770

The results of the prose-reading studies discussed here would suggest that high-performance is achieved
through training, not the use of spaces between words. Given that developers are likely to spend a significant
amount of time being trained on (reading) existing source code, the spacing characteristics of this source
would appear to be the guide to follow.

Table 770.2: Number of expressions containing two binary operators (excluding any assignment operator, comma operator,
function call operator, array access or member selection operators) having the specified spacing (i.e., no spacing, no-space, or
one or more whitespace characters (excluding newline), space) between a binary operator and both of its operands. High-Low
are expressions where the first operator of the pair has the higher precedence, Same are expressions where the both operators
of the pair have the same precedence, Low-High are expressions where the first operator of the pair has the lower precedence.
For instance, x + y*z is space no-space because there are one or more space characters either side of the addition operator and
no-space either side of the multiplication operator, the precedence order is Low-High. Based on the visible form of the .c files.

Total High-Low Same Low-High

no-space 34,866 2,923 29,579 2,364
space no-space 4,132 90 393 3,649
space space 31,375 11,480 11,162 8,733
no-space space 2,659 2,136 405 118
total 73,032 16,629 41,539 14,864

2.3.1 Relative spacing
The spacing between a sequence of tokens can be more complicated that presence/absence, it can also beoperator

relative spacing relative (i.e., more spacing between some tokens than others. One consequence of relative spacing is that
the eye can be drawn to preferentially associate two tokens (e.g., nearest neighbors) over other associations
involving more distant tokens (see Figure 770.2).

A study by Landy and Goldstone[20] asked subjects to compute the value of expressions that contained
an addition and multiplication operator (e.g., 2 + 3*4). The spacing between the operators and adjacent
operands was varied (e.g., sometimes there was more spacing adjacent to the multiplication operator than the
addition, such as 5+2 * 3).

220 v 1.1 January 30, 2008

3 Kinds of reading CHANGES 770

The results showed that a much higher percentage of answers was correct when there was less spacing
around the multiplication operator than the addition operator (i.e., the operands had a greater visual proximity
to the multiplication operator). In this case subjects also gave the correct answer more quickly (2.6 vs. 2.9
seconds).

Relative spacing is sometimes used within source code expressions to highlight the relative precedence
of binary operators. Table 770.2 shows that when relative spacing was used it occurred in a form that gave operator

precedence

the operator with higher precedence greater proximity to its operands (compared to the operator of lower
precedence).

2.4 Other visual and reading issues
There are several issues of importance to reading source code that are not covered here. Some are covered
elsewhere; for instance, visual grouping by spatial location and visual recognition of identifiers. The question grouping

spatial location
word
visual recogni-
tion

of whether developers should work from paper or a screen crops up from time to time. This topic is outside
of the scope of these coding guidelines (see Dillon[11] for a review).

Choice of display font is something that many developers are completely oblivious to. The use of Roman, font

rather than Helvetica (or serif vs. sans serif), is often claimed to increase reading speed and comprehension.
A study by Lange, Esterhuizen, and Beatty[9] showed that young school children (having little experience
with either font) did not exhibit performance differences when either of these fonts was used. This study
showed there were no intrinsic advantages to the use of either font. Whether people experience preferential
exposure to one kind of font, which leads to a performance improvement through a practice effect, is not
known. The issues involved in selecting fonts are covered very well in a report detailing Font Requirements
for Next Generation Air Traffic Management Systems.[4] For a discussion of how font characteristics affect
readers of different ages, see Connolly.[8]

A study by Pelli, Burns, Farell, and Moore[28] showed that 2,000 to 4,000 trials were all that was needed letter detection

for novice readers to reach the same level of efficiency as fluent readers in the letter-detection task. They
tested subjects aged 3 to 68 with a range of different (and invented) alphabets (including Hebrew, Devanagari,
Arabic, and English). Even fifty years of reading experience, over a billion letters, did not improve the
efficiency of letter detection. The measure of efficiency used was human performance compared to an
ideal observer. They also found this measure of efficiency was inversely proportional to letter perimetric
complexity (defined as, inside and outside perimeter squared, divided by ink area).

A number of source code editors highlight (often by using different colors) certain character sequences
(e.g., keywords). The intended purpose of this highlighting is to improve program readability. Some source
formatting tools go a stage further and highlight complete constructs (e.g., comments or function headers). A
study by Gellenbeck[14] suggested that while such highlighting may increase the prominence of the construct
to which it applies; it does so at the expense of other constructs.

A book by Baecker and Marcus[2] is frequently quoted in studies of source code layout. Their aim was to
base the layout used on the principles of good typography (the program source code as book metaphor is
used). While they proposed some innovative source visualization ideas, they seem to have been a hostage to
some arbitrary typography design decisions in places. For instance, the relative frequent change of font, and
the large amount of white space between identifiers and their type declaration, requires deliberate effort to
align identifiers with their corresponding type declaration. While the final printed results look superficially
attractive to a casual reader, they do not appear, at least to your author, to offer any advantages to developers
who regularly work with source code.

3 Kinds of reading
The way in which source code is read will be influenced by the reasons for reading it. A reader has to balance reading

kinds ofgoals (e.g., obtaining accurate information) with the available resources (e.g., time, cognitive resources such
as prior experience, and support tools such as editor search commands).

Foraging theory[39] attempts to explain how the behavioral adaptations of an organism (i.e., its lifestyle)
are affected by the environment in which it has to perform and the constraints under which it has to operate.

January 30, 2008 v 1.1 221

CHANGES 3 Kinds of reading770

Pirolli and Card[30] applied this theory to deduce the possible set of strategies people might apply when
searching for information. The underlying assumption of this theory is that: faced with information-foraging
tasks and the opportunity to learn and practice, cognitive strategies will evolve to maximize information gain
per unit cost.

Almost no research has been done on the different information-gathering strategies (e.g., reading tech-
niques) of software developers. These coding guidelines assume that developers will adopt many of the
strategies they use for reading prose text. A review by O’Hara[24] listed four different prose reading tech-
niques:

O’Hara[24] Receptive Reading. With this type of reading the reader receives a continuous piece of text in a manner which
can be considered as approximating listening behavior. Comprehension of the text requires some portion of the
already read text to be held in working memory to allow integration of meaning with the currently being read
text.

Reflective Reading. This type of reading involves interruptions by moments of reflective thought about the
contents of the text.

Skim Reading. This is a rapid reading style which can be used for establishing a rough idea of the text. This is
useful in instances where the reader needs to decide whether the text will be useful to read or to decide which
parts to read.

Scanning. This is related to skimming but refers more specifically to searching the text to see whether a
particular piece of information is present or to locate a piece of information known to be in the text.

Deimel and Naveda[10] provide a teachers’ guide to program reading. The topic of visual search for identifiers
is discussed in more detail elsewhere.identifier

visual search

Readers do not always match up pairs of if/else tokens by tracing through the visible source. The source
code indentation is often used to perform the matching, readers assuming that if/else tokens at the same
indentation level are a matching pair. Incorrectly indented source code can lead to readers making mistakes.

1 void f(int i)
2 {
3 if (i > 8)
4 if (i < 20)
5 i++;
6 else
7 i--;
8 }

Example

1 #define mkstr(x) #x
2

3 char *p = mkstr(@); /* Implementation supports the @ extended character. */

For those wanting to teach code reading skills, Deimel and Naveda[10] offers an instructors guide (the
examples use Ada). Studying those cases where the requirement is to minimize readability[7] can also be
useful.

Usage
Table 770.3 shows the relative frequency of the different kinds of tokens in a source file (actual token
count information is given elsewhere). Adding the percentages for Preceded by Space and First on Line

transla-
tion phase

3
(or followed by space and last on line) does not yield 100% because of other characters occurring in those
positions. Some tokens occur frequently, but contribute a small percentage of the characters in the visible
source (e.g., punctuators). Identifier tokens contribute more than 40% of the characters in the .c files, but
only represent 28.5% of the tokens in those files.

222 v 1.1 January 30, 2008

3 Kinds of reading CHANGES 770

Characters

P
hy

si
ca

l l
in

es

1

10

100

1,000

10,000

100,000

1,000,000

0 100 200 300

××
×
××
×

×
××
××

×
××

×
×
×
×××××××××××××××××××××××××××××××××××

×

××
×
××××
××××××
×××××××××××

×
×××××
×
×
×
××
×
××
×
×
×
×
×

××

××
×××
×
×××

×
×××××××

××××
×
×
××
×
×
××
×

×
×
××
×
××××××××

××
×

×

×

×

×
××
×

×
×××××
×

××
×
×
×

×
×
×
×××
×××××
×
×
××
×

×

×

×
××
×
××××
×××
××××××

×
×
××
××
××××

•

•
•
•

•
•
•
••••
•••••••

•••

•

••••••••••
•
••••••
•••••••

•

••
•
•••
••

••
•
•••

•

••••••••••••

•

••••••••••

•

••••••••••••••
•••
•••

•

••
•
•••••
••
•
•

•
••••
•••••
••••••
••
•

•
•

••••••
•

••
•
••

•
•
••••

••
•••
••
••
•
••
•
••
••

•
•••
••

••• •

•
•
•
•
• ••• •••• • •••

× .c files

• .h files

Tokens

0 20 40 60 80

×
×
××××××××××××××

×
×××××××

×
××××××

×

×

×××××××
×
×××××××××××

×
××

×
×

×
×
××

×
×
×
×

×
×
×
××

×
×
××

×

•

•
•
••

••
•
•
•••••••

•

••••
•
•

•
•

•
•
•
•

••
•

•

•
•
•
•
•
•

•

•

•

•

•••••

•

•

•••

•••••
•
•

•
••

••

•
•

•

••

•

•
• ••

× .c files

• .h files

Figure 770.17: Number of physical lines containing a given number of non-white-space characters and tokens. Based on the
visible form of the .c and .h files.

A more detailed analysis of spacing between individual punctuators is given elsewhere.
preprocess-

ing tokens
white space

separation

Table 770.3: Occurrence of kinds of tokens in the visible form of the .c and .h files as a percentage of all tokens (value in
parenthesis is the percentage of all non-white-space characters contained in those tokens), percentage occurrence (for .c files
only) of token kind where it was preceded/followed by a space character, or starts/finishes a visible line. While comments are not
tokens they are the only other construct that can contain non-white-space characters. While the start of a preprocessing directive
contains two tokens, these are generally treated by developers as a single entity.

Token % of Tokens
in .c files

% of Tokens
in .h files

% Preceded
by Space

% Followed
by Space

% First Token
on Line

% Last Token
on Line

punctuator 53.5 (11.4) 48.1 (7.5) 27.5 29.7 3.7 25.3
identifier 29.8 (43.4) 20.8 (30.6) 54.9 27.6 1.4 1.2
constant 6.9 (3.8) 21.6 (15.3) 70.3 4.4 0.1 1.6
keyword 6.9 (5.8) 5.4 (4.2) 79.9 82.5 10.3 3.6
comment 1.9 (31.0) 3.4 (40.3) 53.4 2.2 41.2 97.4
string-literal 1.0 (4.6) 0.8 (2.2) 59.9 5.7 0.7 8.0
pp-directive 0.9 (1.1) 4.9 (4.4) 4.7 78.4 0.0 18.2
header-name 0.0 (0.0) 0.0 (0.0) – – – –

January 30, 2008 v 1.1

References
1. J. R. Anderson and C. Libiere. The Atomic Components of Thought.

Lawrence Erlbaum Associates, 1998.
2. R. Baecker and A. Marcus. Human Factors and Typography for

More Readable Programs. Addison–Wesley, Reading, MA, USA,
1990.

3. D. J. Boorstin. The Discoverers. Phoenix Press, 1983.
4. S. Broadbent. Font requirements for next generation air traffic man-

agement systems. Technical Report HRS/HSP-006-REP-01, Euro-
pean Organisation for the Safety of Air Navigation, 2000.

5. M. Celce-Murcia and D. Larsen-Freeman. The Grammar Book:
An ESL/EFL Teacher’s Course. Heinle & Heinle, second edition,
1999.

6. J. J. Clark and J. K. O’Regan. Word ambiguity and the optimal view-
ing position in reading. Vision Research, 39(4):843–857, 1998.

7. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfus-
cating transformations. Technical Report Technical Report 148,
Department of Computer Science, University of Auckland, 1997.

8. G. K. Connolly. Legibility and readability of small print: Effects of
font, observer age and spatial vision. Thesis (m.s.), University of
Calgary, Alberta, Canada, Feb. 1998.

9. R. W. De Lange, H. L. Esterhuizen, and D. Beatty. Performance
differences between times and helvetica in a reading task. Electronic
Publishing, 6(3):241–248, Sept. 1993.

10. L. E. Deimel and J. F. Naveda. Reading computer programs: In-
structor’s guide and exercises. Technical Report CMU/SEI-90-EM-3
ADA228026, Software Engineering Institute (Carnegie Mellon Uni-
versity), 1990.

11. A. Dillon. Reading from paper versus screens: a critical review of
the empirical literature. Ergonomics, 35(10):1297–1326, 1992.

12. J. Epelboim, J. R. Booth, R. Ashkenazy, A. Taleghani, and R. M.
Steinmans. Fillers and spaces in text: The importance of word recog-
nition during reading. Vision Research, 37(20):2899–2914, 1997.

13. D. L. Fisher. Central capacity limits in consistent mapping, visual
search tasks: Four channels or more? Cognitive Psychology, 16:449–
484, 1984.

14. E. M. Gellenbeck and C. R. Cook. Does signaling help professional
programmers read and understand computer programs? In Empiri-
cal Studies of Programmers: Fourth Workshop, Papers, pages 82–98,
1991.

15. D. D. Hoffman. Visual Intelligence: How We Create What We See.
W. W. Norton, 2000.

16. C. Kohsom and F. Gobet. Adding spaces to Thai and English: Ef-
fects on reading. In Proceedings of the 19th Annual Meeting of
Cognitive Science Society, 1997.

17. P. A. Kolers. Reading A year later. Journal of Experimental Psy-
chology: Human Learning and Memory, 2(3):554–565, 1976.

18. P. A. Kolers and D. N. Perkins. Spatial and ordinal components
of form perception and literacy. Cognitive Psychology, 7:228–267,
1975.

19. M. Kubovy and S. Gepshtein. Gestalt: From phenomena to laws.
In K. L. Boyer and S. Sarkar, editors, Perceptual Organization for
Artificial Vision Systems, chapter 5, pages 41–71. Kluwer Academic
Publishers, Boston, 2000.

20. D. Landy and R. L. Goldstone. The alignment or ordering and space
in arithmetic computation. In Proceedings of the Twenty-Ninth An-
nual Meeting of the Cognitive Science Society, pages 437–442, Aug.
2007.

21. F. Lavigne, F. Vitu, and G. d’Ydewalle. The influence of semantic
context on initial eye landing sites in words. Acta Psychologica,
104:191–214, 2000.

22. G. Leech, R. Garside, and M. Bryant. CLAWS4: The tagging of
the British national corpus. In Proceedings of the 15th International
Conference on Computational Linguistics (COLING 94), pages 622–
628, Apr. 1994.

23. G. E. Legge, T. S. Klitz, and B. S. Tjan. Mr. Chips: An ideal-
observer model of reading. Psychological Review, 104(3):524–553,
1997.

24. K. O’Hara. Towards a typology of reading goals. Technical Report
Technical Report EPC-1996-107, Rank Xerox Research Centre,
1996.

25. N. Osaka. Eye fixation and saccade during kana and kanji text read-
ing: Comparison of English and Japanese text processing. Bulletin
of the Psychonomic Society, 27(6):548–550, 1989.

26. D. D. Palmer. A trainable rule-based algorithm for word segmen-
tation. In P. R. Cohen and W. Wahlster, editors, Proceedings of
the Thirty-Fifth Annual Meeting of the Association for Computa-
tional Linguistics and Eighth Conference of the European Chapter
of the Association for Computational Linguistics, pages 321–328.
Association for Computational Linguistics, 1997.

27. S. E. Palmer. Vision Science: Photons to Phenomenology. The MIT
Press, 1999.

28. D. G. Pelli, C. W. Burns, B. Farell, and D. C. Moore. Identifying
letters. Vision Research, 46(28):4646–4674, 2006.

29. R. Pieters and L. Warlop. Visual attention during brand choice: The
impact of time pressure and task motivation. International Journal
of Research in Marketing, 16:1–16, 1999.

30. P. Pirolli and S. K. Card. Information foraging. Psychological Re-
view, 106(4):643–675, 1999.

31. A. Pollatsek, S. Bolozky, A. D. Well, and K. Rayner. Asymme-
tries in the perceptual span for Israeli readers. Brain and Language,
14:174–180, 1981.

32. Z. Pylyshyn. Is vision continuous with cognition? The case for cog-
nitive impenetrability of visual perception. Behavioral and Brain
Sciences, 22(3):341–423, 1999.

33. P. T. Quinlan and R. N. Wilton. Grouping by proximity or similar-
ity? Competition between gestalt principles in vision. Perception,
27:417–430, 1998.

34. K. Rayner. Eye movements in reading and information processing:
20 years of research. Psychology Bulletin, 124(3):372–422, 1998.

35. E. D. Reichle, A. Pollatsek, D. L. Fisher, and K. Rayner. Towards a
model of eye movement control in reading. Psychological Review,
105(1):125–157, 1998.

36. E. D. Reichle, K. Rayner, and A. Pollatsek. The E-Z reader model
of eye-movement control in reading: Comparison to other models.
Behavioral and Brain Sciences, 26:445–526, 2003.

37. D. D. Salvucci. An integrated model of eye movements and visual
encoding. Cognitive Systems Research, 1(4):201–220, 2001.

38. M. L. Staples and J. M. Bieman. 3-D visualization of software struc-
ture. In M. Zelkowitz, editor, Advances in Computers, Volume 49,
pages 96–143. Academic Press, Apr. 1999.

39. D. W. Stephens and J. R. Krebs. Foraging Theory. Princeton Uni-
versity Press, 1986.

40. A. Treisman and J. Souther. Search asymmetry: A diagnostic for
preattentive processing of separable features. Journal of Experimen-
tal Psychology: General, 114(3):285–310, 1985.

v 1.1 January 30, 2008

41. A. M. Treisman and G. Gelade. A feature-integration theory of
attention. Cognitive Psychology, 12:97–136, 1980.

42. P. Verghese and D. G. Pelli. The information capacity of visual

attention. Vision Research, 32(5):983–995, 1992.
43. C. Ware. Information Visualization Perception for Design. Morgan

Kaufmann Publishers, 2000.

January 30, 2008 v 1.1

