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2 Analysis of existing source

1 Introduction

Data structures are an important aspect of software engineering and while a great deal of effort has been
expended on analysing them from a mathematical point of view almost no effort has put into analysing the
thought processes used by developers when creating data structures.

This article investigates the decision making process behind developers’ creation of datatype definitions.
Two sources of data are analysed, measurements of existing code (in particular patterns of field ordering
within one or more aggregate types, e.g., C struct types) and the results of an experiment carried out at
the 2005 and 2008 ACCU conferences (this asked subjects to create one or more data structures to handle a
specified collection of data items).

This first part investigates various patterns that occur in the definitions contained in a large body of existing
C source code, while a second part discusses the results of an experiment that asked developers to create a
set of definition from a specification.

An understanding of the thought processes used by developers when writing code is essential to the creation
of support tools (e.g., refactoring or flagging suspicious usage) and coding guidelines.

From the human point of view the organization of data structures is a classification problem. People actively
use classification to infer characteristics of objects they have not encountered before. For instance, if I
encounter a four legged animal that barks and has a tail I am likely to classify it as a dog and I can use my
existing knowledge of objects that I have previously placed in the dog category to infer some of the likely
characteristics of the animal I have just encountered. This process is not perfect, for instance during World
War II some of the children evacuated from the built-up areas of London to the country had not seen sheep
before and initially classified them as dogs.

Children as young as four have been found to use categorization to direct the inferences they make,"*! and
many different studies have shown that people have an innate desire to create and use categories (they have
also been found to be sensitive to the costs and benefits of using categories®)).

Analysing the factors that influence how developers organise information into one or more aggregate datatypes
requires a more global perspective than can be obtained from measuring source code (e.g., background data
on the application domain and program design constraints).

This first part of the article analyses existing C source code, concentrating on finding common usage patterns
within individual definitions. Experience with source code suggests that the following are some of the
patterns that occur in the ordering of fields within aggregate definitions:

* Fields having the same type will be placed next to other fields having the same type.

* Fields are likely to be placed close to other fields containing information with which they share
semantic associations.

* The ordering of fields will follow the order in which information appears in any written specification
used as the basis for creating a structure definition.

This second part of the article uses the experimental results to analyse relationships between information
that the designer perceives in the application (e.g., in a geospatial application it is likely that the various
kinds of location information will be a strong candidate for being grouped together) and various kinds of
housekeeping information internal to the program (e.g., the next field in a linked list) will also drive the
content and form of these data structures.

The experiment performed at the two conferences asked subjects to create data structure to represent various
kinds of information. The results of these two experiments are discussed in the second part of this article.

2 Analysis of existing source

The following subsection discusses measurements of struct definition field usage in the translated form of
a number of large C programs (e.g., gcc, idsoftware, linux, netscape, openafs, openMotif, and postgresql).
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Figure .1: Number of structure and union type definitions containing a given number of members (members in any nested
definitions are not included in the count of members of the outer definition). Based on the visible form of the . c and .h files.

The contents of any header files were only counted once. This C source yielded 6,244 struct definitions
containing a total of 47,554 fields (average 6.7 per definition).
The following patterns of behavior were investigated:

* Field type sequences, in particular the observation that fields having the same type are often placed
next to each other.

 Shared field names. The extent to which an aggregate definition contains one or more fields whose
names also appears in other aggregate definitions.

Character sequences that are shared between fields in the same aggregate definition, e.g., farm_house
and farm_animal both contain farm.

Influence of specification on field ordering. When a written specification exists do developers follow
the ordering in which it presents information when ordering fields within a structure definition?

2.1 Field type sequences

Experience shows that fields having the same type are often placed next to each other within a structure. This
subsection investigates this observation.

If, within a aggregate definition, fields of the same type are always placed next to each other, then a definition
containing 7' different field types would have T" — 1 changes of type. If developers always attempt to place
fields of different type next to each other the number of changes of type has a possible maximum value equal
to the number of fields present minus one (this pattern requires sufficient fields of different type that it is
possible to continually change type).

The possible sequences of field type within a definition will depend on the number of occurrences of each
type. For instance, a definition containing four fields with two fields sharing one type and the other two fields
sharing a different type (say x and y) can have one of six possible type sequences Xxyy XyXy VXXV VXYX
xyyx yyxx of which 33.3% have the minimum number of changes of type. When two fields share a single
type and each of the other two fields have different types there are 12 possible field type sequences xxyz
XXZY XYXZ XYZX XZXY XZYX YVXXZ YXZX YzZXX zXyx zxXy zyxx and again 50% of the sequences have
the minimum number of changes of type.

As the number of fields increases the number of possible type sequences increases. In the case of five fields
with three sharing the same type and two sharing a different type there are 10 possible type sequences xxxyy
XXYXY XXVYX XYXXY XYXYX XYYXX YXXXy yxxyx yxyxx yyxxx of which 20% of the sequences have the
minimum number of changes of type.
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Figure .2: The measured percentage of struct definitions having a minimal type change sequence (x-axis) and the percentage
that expected to occur if fields were ordered randomly. A cross indicates a measured percentage and the random percentage for a
definition containing that particular number of types. If field ordering were random the crosses would be expected to cluster along
the solid diagonal line (bullets indicate 1 standard deviation, dashed line 3 standard deviations). Data for all definitions containing
between four and seven (inclusive) fields.

Table -1.1 lists possible type sequences for aggregates containing 4, 5 and 6 fields, their number of occurrence
in C struct definitions, the expected percentage having the minimal number of changes of type and the
actual percentage having minimal changes of type. The enumeration of field type sequences was calculated
using a purpose written program.!

All pointer types were treated as being the same type (i.e., the pointer type), all arrays were treated as having
the same type (i.e., the array type) and all struct types were treated as having the same type (i.e., the struct
type; it did not matter whether these types occurred via the use of a typedef on an inline definition).

The number of struct definitions extracted from the sourced used for this analysis was sufficient to provide
enough data to analyse definitions containing seven or fewer fields. Figure -1.1 shows a rapid, power-law
like, decline in the number of C struct definitions as the number of fields in a definition increases, so
significantly more source code would be needed to analyse definitions containing eight or more fields.

In all cases the number of definitions containing minimal field type change sequences was greater than would
have occurred had the selection been random, Figure -1.2 shows the percentage is greater than three standard
deviations (calculated as sqrt(p(1 — p)n) where p is the probability of a minimal field sequence occurring
and n is the number of instances, which has been normalised to 100).

Future research might analyse definitions where the number of type changes was only one, or more, greater
than the minimum.

I This program was written by Dawn Lawrie. Your author is keen to hear from anybody who knows of an algorithm, other than
enumeration, for calculating these values. The number of different type combinations for a definition containing /V fields is the number
of integer partitions of N. The probability of encountering a field order having the minimum number of changes of type is obtained
by dividing the number of minimum changes of type (this is m!, where m is the number of types in the partition) by the number of
possible combinations of each type in the partition, for each of partition possible for a given definition.
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Table .1: Field type patterns for struct definitions containing various numbers of fields, the number of measured occurrences
oin source code and the measured percentage having a minimum number of type changes, and the percentage of type changes
expected if field ordering was random. When all fields have the same type, or where each field has a different type, every sequence
contains the same number of type changes and were not counted.

Fields Field type pattern  Source occurrences % minimum type change % random ordering

4 112 239 77.4 50.0
4 13 185 78.9 50.0
4 22 98 62.2 33.3
5 1112 57 87.7 40.0
5 113 94 64.9 30.0
5 122 86 57.0 20.0
5 14 121 76.0 40.0
5 23 94 61.7 20.0
6 11112 19 73.7 33.3
6 1113 23 60.9 20.0
6 1122 28 35.7 13.3
6 114 53 64.2 20.0
6 123 72 55.6 10.0
6 15 51 66.7 33.3
6 222 9 100.0 6.7
6 24 60 51.7 13.3
6 33 21 571 10.0

Possible reasons for this grouping of fields by type include:

* Fields are grouped together semantically and such related fields are likely to hold similar kinds of
information and this is represented using the same type.

* Developers are attempting to minimise unused storage space. Some processors require that types larger
than a byte be assigned an address that is a multiple of some power of two. For instance, an int may
have to be assigned an address that is a multiple of 2 or 4. Grouping fields having the same type is a
simple strategy to ensure that no unused padding appears between these fields.

* Developers treat the type of a field as a categorization attribute and give it significant weight when
deciding the relative ordering of fields within a structure type.

2.2 Same information, same name and type?

Developers are encouraged to give meaningful names to identifiers. If fields in different definitions have the
same name (and contain a reasonable number of characters) it might be supposed that the information they
hold is closely related semantically and these fields might be expected to share the same type.

This supposition relies on different developers representing the same information using the same name and
the same type (the source code used for this analysis was written by a large number of developers). An earlier
ACCU experiment!”! that asked subjects to assign a meaning to different identifier names found a wide range
of meanings assigned to each identifier. The analysis of the experimental results, in part two of this article,
will provide information on the extent to which developers choose the same name and type to denote the
same application information.

Measurements of the translated C source show that within the measured 6,244 struct definitions and 47,554
fields, 21,805 (45.9%) fields had names that were not shared by other fields, while 6,415 names were shared
by two or more of the other 25,749 fields (average 4.0 fields per name).
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Table .2: Number of times a given name occurs as a field and the number of different names occurring that number of times (e.g.,
if blah_blah is used three times as the name of a field it would add one to the count appearing in the second column of the 3’s
row). Only field names containing 4 or more characters were analysed.

Times name used  Number of different names  Percentage of all shared names

2 3239 50.54
3 1108 17.29
4 622 9.71
5 310 4.84
6 290 4.52
7 162 2.53

Is a field that shares its name with another field more likely to have a certain type? With one possible
exception Table -1.3 suggests that the type of a field does not change the probability of its name appearing in
another struct definition. A possible exception is pointer types which appear to be slightly more likely to
occur, than the average, as the type of a field whose name appears in another struct definition (your author
is uncertain how to appropriately calculate a standard deviation for values appearing in the two columns and
so cannot say anything about statistical significance).

Table .3: Occurrences of structure type changes as a percentage of all field types (second column) and as a percentage of all
fields whose names also appear in other struct definitions.

Type % all occurrences % duplicate occurrences
int 16.1 16.8
pointer-to 14.1 18.3
unsigned char 11.6 11.1
unsigned int 10.3 8.7
array of 9.4 10.9
unsigned short 7.6 7.5
struct 7.2 7.3

A study by Anquetil and Lethbridge!!! analyzed 2 million lines of Pascal (see Table -1.4) and found that
members that shared the same name were found to be much more likely to share the same type than members
having different names.

Table .4: Number of matches found when comparing between pairs of members contained in different Pascal records. Adapted
from Anquetil and Lethbridge.!!!

Member Types the Same  Member Types Different Total
Member names the same 7,709 (33.7%) 15,174 (66.3%) 22,883
Member names different 158,828 ( 0.2%) 66,652,062 (99.8%) 66,710,890

Refactoring and the desire for backwards compatibility can result in fields with the same name having the
same type, i.e., fields moved into a new definition are retained in the original definition for backwards
compatibility (perhaps because it is contained in a header included by lots of third party programs).

2.3 Fields sharing a subsequence of characters

Developers sometimes use several words or abbreviations to create an identifier having what they consider
to be an appropriate semantic interpretation. If two or more fields within an aggregate definition share a
semantic association it is possible that one or more subcomponents of their names will share a sequence
of characters, e.g., farm_house and farm_animal both contain farm. The article on the 2007 ACCU
experiment!®! describes an algorithm for extracting the likely intended subcomponents of an identifier and
this was used for the analysis described here.
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Figure .3: The number of individual field pairs that share one or more subcomponents plotted against their relative distance from
each other; based on the translated C source (crosses) and based on random ordering of field pairs (bullets). Only definitions
containing five or more fields were analysed and only character sequences containing three or more characters were counted. A
field pair was only counted once, i.e., field pairs sharing more than one subcomponent were not counted multiple times.

A pair of fields within the same aggregate definition that share one or more is subcomponents is called a field
pair in this article.

If developers group together semantically related fields within a definition then field pairs will be closer to
each other than if fields were ordered randomly. This grouping expectation relies on there being a sufficiently
large number of different subcomponent character sequences that developers are not likely to assign different
semantic interpretations to the same sequence.

Figure -1.3 shows the number of individual field pairs (crosses) that share one or more subcomponents
plotted against their distance from each other (adjacent fields have distance 1, if one field separates them they
have distance 2 and so on; see Table -1.5). The bullets show the behavior expected if the fields in a field pair
are ordered randomly.

Figure -1.4 shows the average distance of all field pairs (crosses) occurring within a definition having a given
number of fields. The bullets show the average distance expected if the fields in a field pairs are ordered
randomly.

The average distance slowly increases as the number of fields in a definition increases. Reasons for this
increase, rather than staying essentially the same, include:

* Definitions containing lots of fields are more likely to contain accidental field pairs, in the sense that
they share a subsequence that was not explicitly intended to be shared, than definitions containing few
fields.

* The greater the number of fields the greater the probability that many semantically related fields will
be clustered together, creating field pairs over a greater distance.

* Fields are added and deleted from definitions as software evolves.l'!! In some cases developers have to
add new fields at the end of a definition so as not to change the storage layout of the existing fields.
In this case a newly added field may create a field pair but not be placed much further away from its
corresponding member(s) than would be the case if it had been added when the definition was first
created.

If field pairs are clustered together it is to be expected that the average field pair distance will be less than
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Figure .4: The average distance between field pairs for definitions containing a given number of fields; based on the translated
C source (crosses) and based on random ordering of field pairs (bullets). The straight line is a least squares fit of the average
distance measurements. Only definitions containing five or more fields were analysed and only character sequences containing
three or more characters were counted. A field pair was only counted once, i.e., field pairs sharing more than one subcomponent
were not counted multiple times.

the random field distance for all sizes of definitions. Figure -1.4 shows that this is not the case when the
definition contains between five and eight fields: 5 fields, expect less than 2.0 but find 3.25; 6 fields 2.33
vs. 4.46; 7 fields 2.67 vs. 3.54; 8 fields 3.00 vs 3.18. Possible reason for this behavior include: for smaller
definitions developers feel the semantic association between fields more obvious than larger definitions and
there is less need to explicitly call it out via shared subcomponent names; in a set of fields having a tight
semantic association any shared name is likely to be part of the aggregate type name and repeating this
sequence in field names would be overkill.

2.3.1 Average distance between random pairs of fields
The average distance between a randomly chosen pair of fields in a definition containing NN fieldsis (N +1)/3.

Table .5: Number of possible occurrences (column values) of each distance (top row) between every possible combination of
field pairs in definitions containing a given number of fields (left column). For instance, a struct containing five fields has four
field pairs having distance 1 from each other, three distance 2, two distance 2, and one field pair having distance 4.

Distance 1 2 3 4 5 6

Number of fields

4 3 2 1

5 4 3 2 1
6 5 4 3 2 1
7 6 5 4 3 2 1

Proof: The average distance can be obtained by summing the distances between all possible field pairs and
dividing this value by the number of possible different pairs.

Table -1.5 shows the pattern that occurs as the number of fields in a definition increases.

In the case of a definition containing five fields the sum of the distances of all field pairs is: (4*1 + 3*%2 + 2*3
+ 1*4) and the number of different pairs is: (4+3+2+1). Dividing these two values gives the average distance
between two randomly chosen fields, e.g., 2.

Summing the distance over every field pair for a definition containing 3, 4, 5, 6, 7, 8, ... fields gives the
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sequence: 1, 4, 10, 20, 35, 56, ... This is sequence A000292 in the On-Line Encyclopedia of Integer Sequences,
www.research.att.com/{~}njas/sequences and is given by the formula n * (n + 1) % (n + 2)/6 (where
n = N — 1, i.e., the number of fields minus 1).

Summing the number of different field pairs for definitions containing increasing numbers of fields gives the
sequence: 1, 3, 6, 10, 15, 21, 28, ... This is sequence A000217 and is given by the formula n * (n 4+ 1)/2.
Dividing these two formula and simplifying yields (N + 1)/3.

3 Influence of a specification

Many software development projects start with some form of specification containing information about
the application. This specification may be sufficiently detailed that it is possible to create a one-to-one
mapping from the information it contains to an aggregate definition. Of necessity any information present
in a specification, that may be encoded in the fields of a definition, appears in some order. Definitions are
created by adding one field at a time and if the developer works systematically through a specification it is to
be expected that field ordering used will have that order. Following the order of information in a specification
has the following advantages:

« simplifies the process of verifying that all items listed in the specification are covered by a field,
* requires less cognitive effort to make use of an existing ordering than to create a different one,

* people influenced by what appears to be an existing way of doing things.

To what extent does the order of fields in struct definitions in existing code follow the order of corresponding
information within a specifications. Source of data that can be used to answer this question are hard to come
by. National and international standards sometimes go into the level of detail required and in some cases
there are implementations available whose source code can be viewed. For instance, POSIXP!! provides a
specification of the information that a conforming implementation is required to support in various struct
definitions. POSIX is supported by a wide variety of vendors who need to make available to their customers
the source code, in header files, of the specified definitions.?

There are a number of complicating factors involved in using POSIX for this analysis, including:

» Implementations of much of the functionality specified in POSIX were available before work started
on this standard. The authors of the standard may have based some of the orderings given in the
specification on one or more of these existing implementations.

* One of the original vendors (i.e., AT&T) licensed various versions of its implementation to other
vendors. It is possible that this resulted in some of the contents of some headers sharing more in
common than they might have if implemented from scratch.

Header files from five different platforms supporting the functionality specified by POSIX were analysed
(value in parentheses is the latest year any of the headers, for that implementation, could have been modified).
The platforms were: RedHat 5.0 Linux (1996), Solaris 2.5 (1996), HP/UX 10 (1996), RS/6000 running
AIX 3.2 (1992), Suse 10.3 Linux (2008).

Two versions of the POSIX Standard were used for the analyse, the first™ published in 1990 and the latest!®’
published in October 2008 (current a final draft being voted as the next revision of POSIX).

Most of the structs are required to support a relative small number of fields (the number in parentheses):
sigaction (3), uname (5), tms (4), stat (10), flock (5), termios (5) and passwd (5).

» With the exception of Solaris, which had one field out of order, all implementations of the sigaction,
uname and tms structure types had the same field ordering as that given in the POSIX standard.

“2Your author is keen to hear from anybody who knows of any other publicly available specifications and associated implementation
headers.
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5 Discussion

* In all implementations the flock (one additional field in Solaris, two additional fields in AIX) and
termios (the same three additional fields in RedHat and Suse) structure types had the same field
ordering as that given in the POSIX standard.

» Within the stat structure type defined in the header sys/stat.h the relative positions of the fields
st_mode and st_dev was reversed between the first and latest edition of the POSIX Standard. Some
vendors follow one ordering while the remaining vendors follow the other. All vendors have defined
more than the ten fields listed in the first edition and intersperse the additional fields at a variety of
different locations.

» Within the passwd structure type defined in the header pwd.h all of the implementations included
fields not specified in either version of the POSIX standard, with the additional field shared across
implementations always occurring in the same relative location.

» The sigevent structure type was not specified in the first edition of the POSIX standard, but is in
later versions. It is defined in Solaris and HP/UX (in both cases with one field missing) and Suse (with
two fields appearing in a different order).

4 Other definitions

It is likely that aggregate definitions will not be the only kind of definitions created by subjects taking part in
the experiment. Names may be given to scalar types through the use of typedef (or some other mechanism
appropriate to the language used by the subject) and names may be defined to represent particular kinds of
entities (e.g., using macros or enumeration constants).

These non-structure definitions are not of interest to the questions investigated in this study, but they may
be of interest for other questions concerning developer decision making. For instance, whether to use a
macro (e.g., a #define; one study'¥ was able to automatically map some sequences of identifiers defined as
object-like macros to members of the same, tool created, enumerated type).

5 Discussion

The first part of this study set out to investigate the extent to which various patterns of struct field usage
occur within existing source code.

* Fields that have the same type were found to occur in sequence with a probability that is significantly
better than chance. There is no data to support any conclusions for why this might be so (e.g.,
developers actively try to achieve such a clustering or that clustering is driven by developer perceived
semantic similarity between the information contained in fields and semantically similar information
tends to have the same type).

* Fields in different definitions are sometimes given the same name (see Figure -1.2). There is no data
to support any conclusions (e.g., developers use the same name to represent semantically similar
information or the probability that different developers happen to use the same names). Fields having
a particular type were not more likely to share the same name (see Figure -1.3). Refactoring and a
desire for backwards compatibility can generate fields of the same name having the same type.

* Pairs of fields, in the same definition, whose names share a common subcomponent are much closer
to each other than would be expected from a random field ordering. One explanation is that fields
sharing a semantic association are grouped together and share one or more sequence of characters in
their name.

* In a very small sample there was very good agreement between the ordering of information in a
specification and the fields in structure definitions used by various implementations.
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5.1 Threats to validity

The C source measured for this study has been actively worked on for many years and during that time
its struct definitions are likely to have evolved. A study!'!! of the release history of a number of large C
programs, over 3-4 years (and a total of 43 updated releases), found that in 79% of releases one or more
existing structure or union types had one or more fields added to them, while structure or union types had
one or more fields deleted in 51% of releases and had one or more of their field names changed in 37% of
releases. One or more existing fields had their types changed in 35% of releases.!!"!

The only source code measured was written in C. To what extent is it possible to claim that the findings apply
to code written in other languages? Measurements of classes!!?! in large Java programs have found that the
number of members follows the same pattern as that in measured in C (see Figure -1.1). While there are no
obvious reasons why the patterns found in C should not also occur in other languages, there is no reason why
they should. Measurements of source written in other languages would put this issue to rest.

6 Further reading

A readable collection of papers on how people make use categories to solve problems quickly without a
lot of effort: "Simple Heuristics That Make Us Smart" by Gerd Gigerenzer, Peter M. Todd and The ABC
Research Group, published by Oxford University Press, ISBN 0-19-154381-7.

A readable upper graduate level book dealing with how people create and use categories "Classification and
Cognition" by W. K. Estes, published by Oxford University Press, ISBN 0-19-510974-0.
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